将音频编解码器植入28nm高级移动多媒体芯片系统
扫描二维码
随时随地手机看文章
概述
音频处理对于手机、平板电脑等消费电子应用和其他大量生产的产品非常重要。面积和功耗往往是关键设计标准,而市场要求有高质量高保真(Hi-Fi)音频效果。将经过硅验证和优化的音频IP集成实现特定的音频功能,有助降低当今多媒体芯片系统的功耗、面积和成本。
随着设计逐渐过渡到28纳米工艺技术,集成音频功能这一挑战变得愈加复杂,原因是模拟电路并不遵循摩尔定律,也不会随着工艺发展而尺寸减小。采用28纳米工艺的晶圆成本会比65纳米或40纳米工艺技术高出许多。数字电路遵循摩尔定律,虽然晶圆成本提高,但是它的性能和密度也提升了。音频编解码器采用的模拟电路一般使用IO器件,因此不会像数字电路那样使用内核器件(core device)而减小尺寸。这样晶圆成本增加的同时,模拟电路固有性能并没有改善,面积也没有减小,因此必须开发新的架构以减少总面积。例如,采用65纳米技术、面积为2.5平方毫米的音频编解码器,在采用28毫米技术后面积需要减小至1.9平方毫米才能使硅成本保持相同。就是这25%面积的减小构成了对高级工艺节点音频编解码器的关键挑战。
本文研究了将音频功能集成在28纳米移动多媒体芯片系统上所面临的主要系统及技术挑战,以及如何通过以下技术应对这些挑战:
·利用摩尔定律,将部分功能从模拟改由数字来实现;
·灵活设计,支持芯片系统通用参考时钟的音频采样速率;
·做好好电源电压降低和性能之间的平衡;
· 深入了解芯片系统之外的系统功能划分;
认识到有措施可使系统成本最小化,设计人员和系统架构师将能够发现成本、功能和性能之间的有效平衡,使他们能够嵌入音频IP解码器解决方案,从而帮助他们的SOC在竞争中胜出。
音频编解码器基本知识
音频编解码器主要由两类数据转换器模块组成,即用于录音的模拟-数字转换器(ADC)和用于回放的数字-模拟换器(DAC)。对于立体声或多声道解码器,这些模块会被分别复制。图1是典型的立体声音频编解码器框图。 图中文录音声道包括具有音量控制的放大器,可将小信号麦克风和大信号线缆调整到模拟-数字转换器的输入范围。回放声道包括能够直接驱动耳机或小型扬声器放大,每路都分别具有音量控制功能。此外还有提供麦克风偏置的低噪音电源。
数字电路有多个部分构成,最重要的是数字音频滤波器,它可将数据速率转换为数据转换器的过采样时钟,并消除音频带外的高频噪声。时钟管理也很重要,它可确保不同速率的模块彼此保持同步,并支持多种采样速率。
图1:音频编解码器功能性框图