太阳能只比中国股市好点了 一周破产三家巨头
扫描二维码
随时随地手机看文章
从很早以前,多天线技术便已在移动无线系统中得到使用。在早期的基站发射和车载移动台接收时期,大蜂窝小区网络拓扑结构中多路径传播会产生选择性衰落,因而影响到信号质量,特别是在市区内这样的问题更加严重。以往的办法是使用基站发射和车载接收机天线分集来解决这个问题。随着手机变得越来越小,车载通信装置经过简化而开始采用蓝牙音频连通性技术,移动设备中的接收分集已经逐渐淘汰。不过,这一趋势很快将发生变化:最新的无线局域网实施使用了多天线空间流,能够增加发射带宽和速度。随着实施这一先进技术的低成本硬件的问世,首次发布的3GPP LTE(第三代合作伙伴计划长期演进)标准,特别是其TDD(时分双工)版本已经提议并实施了各种多天线技术。
再次说明一下,基础的无线信道使用的是单路发射和单路接收天线,称为SISO(单路输入单路输出)。这种简单的无线信道设定了信号传输性能的基准,在此基础上可以对所有更复杂的传输配置进行测量。SIMO(单路输入多路输出)提供了比SISO基准更大的接收天线冗余,支持在接收机中使用接收分集技术,例如最大比合并等。这可以改善在设备接收机上观测到的SINR,并有助于改善信道衰落条件下的性能。 MISO(多路输入单路输出)提供发射天线冗余,像在LTE情况中一样,支持使用AlamouTI符号编码或空频分组编码(SFBC)等发射分集技术。与 SIMO一样,这也可以改善在设备接收机上观测到的SINR,并可帮助提供保护,防止信道衰落。 无论是SIMO还是MISO都不能提高数据吞吐量,但它们可以降低误码率,从而减少需要重发的数据量。
MIMO(多路输入多路输出)提供额外的发射和接收天线冗余。如果将相同的数据发送到发射天线,这一冗余可用来改善上面所述使用相同发射和接收分集技术的设备接收机上的SINR,或者可以牺牲部分或全部可能的SINR性能改善,以便获得更高的频谱效率。空间多路复用发射技术(使用发射天线发送独立数据流)可以为单一用户提供更高的数据吞吐量(SU-MIMO或单用户MIMO),或增加系统蜂窝小区容量(MU-MIMO或多用户MIMO)。
除了这些分集和空间多路复用技术之外,还可以使用多天线配置将发射或接收集中在特定方向上。这种技术称为波束赋形,取决于具体应用,可以采用固定波束赋形或可变波束赋形,并能够改善系统性能。波束赋形技术可在许多不同频率的应用中使用,包括声纳和地震学、声学、无线通信、射电天文学和雷达等。