专家支招:如何确保智能电表的安全性?
扫描二维码
随时随地手机看文章
对智能电表的攻击类型大体可分为物理攻击(外部干扰、绕过中线、中线缺失等)、电气攻击(过/欠压、电路探测、ESD等)与软件和数据攻击(间谍软件插入、网络攻击 )。除了对电表的物理篡改外,由于电网已经互联,多数已知的漏洞都与通讯媒介和通讯协议有关。
针对物理篡改的解决方案包括使用磁力传感器(检测是否有强磁场,强磁场可影响当前变压器电表的读数)、倾斜传感器,可检测授权位置的电表是否被去除或出现物理篡改,在固件中使用篡改算法,帮助确保持续计费,还可以在电表外壳上安放防篡改开关,外壳打开时,可触发篡改通知。
自动计量系统包括软件、硬件、通信、客户关连的系统以及电表数据管理(MDM)软件。随着电表变得智能化和网络化,电表软件必须提供充分的安全功能,防止非法更改软件配置、已记录数据的读数以及校准数据的修改等。解决方案中需要纳入安全技术,确保通信通道安全并确保资产的物理安全,使智能电网更加安全和可靠。
安全通信协议
目前,电网中的各方使用的数据交换协议有多种。全球信息技术领域广泛使用传输控制协议 (TCP)/互联网协议 (IP)、超文本传输协议 (HTTP)和文件传输协议 (FTP) 等。由于传输的数据很容易被黑客窃取,所以这些数据不十分安全且容易遭受攻击。对于电网或智能电表,必须用互联网协议安全性(IPSec)、安全套接字层(SSL)、 传输层安全(TLS)及安全外壳(SSH)等协议取代非安全协议。IPSec 采用加密技术保证专用网络之间的通讯方的数据保密、完整性及真实性。
控制和命令用的高级别安全性
AES等对称密钥密码系统适用于批量数据,但安全级别不高。非对称密钥密码系统如椭圆曲线数字签名算法(ECDSA),适用于加密远程断开/连接实时电价更改等控制/命令。这就确保了控制电网设备的命令是高度真实性。基于椭圆曲线加密技术 (ECC)的密钥交换提供高级别的安全性。Zigbee®等无线网络可采用ECC 提供数字证书,以交换智能电网生态系统内ZigBee节点/设备之间的信息。
加密技术
注:几乎所有安全协议要求一项或多项加密技术来加密数据。128 位AES 密码广泛应用于智能电表应用,并用于单个电表与电表数据采集设备之间的通信。由于数据已被加密,因此可以防止被窃取。
加密算法的密钥生成和存储
几乎所有的安全密码和密码密钥都依赖随机播种。使用一个伪随机数生成密钥会导致伪安全性。美国国家标准与技术研究院(NIST)采用文件传输协议 140-2 合规随机数发生器,以确保高安全性。建议使用硬件而非软件生成随机数,并在出现破解事件时删除密钥。