当前位置:首页 > 消费电子 > 视频技术
[导读]本文从技术角度对MPEG-2的视频标准、MPEG-4 AVC/H.264和AVS视频(GB/T 200090.2) 三个视频标准进行对比,包括技术方案、主观测试、客观测试、复杂度等四个方面。 &nb

本文从技术角度对MPEG-2的视频标准、MPEG-4 AVC/H.264和AVS视频(GB/T 200090.2) 三个视频标准进行对比,包括技术方案、主观测试、客观测试、复杂度等四个方面。
    一、技术对比
AVS视频与MPEG标准都采用混合编码框架(见图1),包括变换、量化、熵编码、帧内预测、帧间预测、环路滤波等技术模块,这是当前主流的技术路线。AVS的主要创新在于提出了一批具体的优化技术,在较低的复杂度下实现了与国际标准相当的技术性能,但并未使用国际标准背后的大量复杂的专利。AVS-视频当中具有特征性的核心技术包括:8x8整数变换、量化、帧内预测、1/4精度像素插值、特殊的帧间预测运动补偿、二维熵编码、去块效应环内滤波等。


图 1 典型视频编码框架

AVS视频编码器框图如下图所示。

 

图 2  AVS视频编码器框图

    AVS视频标准定义了I帧、P帧和B帧三种不同类型的图像,I帧中的宏块只进行帧内预测,P帧和B帧的宏块则需要进行帧内预测或帧间预测,图中S0是预测模式选择开关。预测残差进行88整数变换(ICT)和量化,然后对量化系数进行zig-zag扫描(隔行编码块使用另一种扫描方式),得到一维排列的量化系数,最后对量化系数进行熵编码。AVS视频标准的变换和量化只需要加减法和移位操作,用16位精度即可完成。
    AVS视频标准使用环路滤波器对重建图像滤波,一方面可以消除方块效应,改善重建图像的主观质量;另一方面能够提高编码效率。滤波强度可以自适应调整。

AVS标准支持多种视频业务,考虑到不同业务之间的互操作性,AVS标准定义了档次(profile)和级别(level)。档次是AVS定义的语法、语义及算法的子集;级别是在某一档次下对语法元素和语法元素参数值的限定集合。为了满足高清晰度/标准清晰度数字电视广播、数字存储媒体等业务的需要,AVS视频标准定义了基准档次(Jizhun profile)和4个级别(4.0、4.2、6.0和6.2),支持的最大图像分辨率从720576到19201080,最大比特率从10 Mbit/s到30 Mbit/s。
    表1  AVS与MPEG-2、MPEG-4 AVC/H.264使用的技术对比和性能差异估计

视频编码标准

MPEG-2视频

MPEG-4 AVC/H.264视频

AVS视频

AVS视频与AVC/H.264性能差异估计

(采用信噪比dB估算,括号内的百分比为码率差异)

帧内预测

只在频域内进行DC系数差分预测

基于4&TImes;4块,9种亮度预测模式,4种色度预测模式

基于8&TImes;8块,5种亮度预测模式,4种色度预测模式

基本相当

多参考帧预测

只有1帧

最多16帧

最多2帧

都采用两帧时相当,帧数增加性能提高不明显

变块大小运动补偿

16&TImes;16

16&TImes;8(场编码)

16×16、16×8、8×16、8×8、8×4、4×8、4×4

16×16、16×8、8×16、8×8

降低约0.1dB

(2-4%)

B帧宏块直接编码模式

独立的空域或时域预测模式,若后向参考帧中用于导出运动矢量的块为帧内编码时只是视其运动矢量为0,依然用于预测

时域空域相结合,当时域内后向参考帧中用于导出运动矢量的块为帧内编码时,使用空域相邻块的运动矢量进行预测

提高0.2-0.3dB

(5%)

B帧宏块双向预测模式

编码前后两个运动矢量

编码前后两个运动矢量

称为对称预测模式,只编码一个前向运动矢量,后向运动矢量由前向导出

基本相当

¼像素运动补偿

仅在半像素位置进行双线性插值

½像素位置采用6拍滤波,¼ 像素位置线性插值

½像素位置采用4拍滤波,¼像素位置采用4拍滤波、线性插值

基本相当

变换与量化

8×8浮点DCT变换,除法量化

4×4整数变换,编解码端都需要归一化,量化与变换归一化相结合,通过乘法、移位实现

8×8整数变换,编码端进行变换归一化,量化与变换归一化相结合,通过乘法、移位实现

提高约0.1dB(2%)

熵编码

单一VLC表,适应性差

CAVLC:与周围块相关性高,实现较复杂

CABAC:计算较复杂

上下文自适应2D-VLC,编码块系数过程中进行多码表切换

降低约0.5dB(10-15%)

环路滤波

基于4×4块边缘进行,滤波强度分类繁多,计算复杂

基于8×8块边缘进行,简单的滤波强度分类,滤波较少的像素,计算复杂度低

——

容错编码

简单的条带划分

数据分割、复杂的FMO/ASO等宏块、条带组织机制、强制Intra块刷新编码、约束性帧内预测等

简单的条带划分机制足以满足广播应用中的错误隐藏、恢复需求

——

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭