当前位置:首页 > 公众号精选 > TsinghuaJoking
[导读]关于经典网络重要的BP(误差反向传播网络)是所有学习人工神经网络最先接触到的一个实用网络,它的原理相对比较简单,在很多平台中都非常容易实现。

这学期的人工神经网络课程已经进行完了第三章内容,关于经典网络重要的BP(误差反向传播网络)是所有学习人工神经网络最先接触到的一个实用网络。它的原理相对比较简单,在很多平台中都非常容易实现。

学习神经网络的基本原理之后,更重要的是能够通过一些应用场合来应用它,使他能够帮助自己解决一些实际的工程问题。

近期购买到的 LC100-A[1] 电感电容测量模块,用于测量一些实验中实验对象的电感、电容值随着其他一些物理变量(工作电压、距离、温度等)所产生变化规律。为了便于实验,需要能够将LC100-A测量数值自动记录。

<<< 左右滑动见更多 >>>

在开始的方式就是直接使用摄像头获取液晶显示数据,然后使用字符识别软件来完成其中数字的识别。

测试一下CNOCR识别效果。它对于屏幕截图中的文字识别效果还不错:

▲ 屏幕截取的一段文字
  • 识别时间:1.98。* 识别结果:

[['●', '更', '新', '了', '训', '练', '代', '码', ',', '使', '用', 'm', 'x', 'n', 'e', 't', '的', 'r', 'e', 'c', 'o', 'r', 'd', 'i', 'o', '首', '先', '把', '数', '据', '转', '换', '成', '二', '进', '制', '格', '式', ',', '提', '升', '后', '续', '的'], ['训', '练', '效', '率', '。', '训', '练', '时', '支', '持', '对', '图', '片', '做', '实', '时', '数', '据', '增', '强', '。', '也', '加', '入', '了', '更', '多', '可', '传', '入', '的', '参', '数', '。'], ['●', '允', '许', '训', '练', '集', '中', '的', '文', '字', '数', '量', '不', '同', ',', '目', '前', '是', '中', '文', '1', '0', '个', '字', ',', '英', '文', '2', '0', '个', '字', '母', '。'], ['。', '提', '供', '了', '更', '多', '的', '模', '型', '选', '择', ',', '允', '许', '大', '家', '按', '需', '训', '练', '多', '种', '不', '同', '大', '小', '的', '识', '别', '模', '型', '。'], ['●', ' ', '内', '置', '了', '各', '种', '训', '练', '好', '的', '模', '型', ',', '最', '小', '的', '模', '型', '只', '有', '之', '前', '模', '型', '的', '1', '/', '5', '大', '小', '。', '所', '有', '模', '型', '都', '可', '免', '费'], ['使', '用', '。']]

那么对于前面液晶屏幕识别效果呢:

▲ 只是数字部分

识别结果:[['.', '。', '与', 'F', '早', 'H']]

好像驴唇不对马嘴。

这主要原因还是原来网络没有针对上述液晶实现数字进行训练过。由于液晶显示图片质量非常好,实际上只需要最简单的BP网络就可以达到很好的效果。

下面给出在MATLAB中构建网络并进行实验的过程。


使用神经网络解决问题,一个重要的环节就是进行训练数据的准备。通过对采集到的一些图片中的数字进行提取并手工标注,来完成对网络的训练。

1.数字分割

下面是桌面摄像头捕捉到的测量图片,通过简单的图片灰度投影,比较方便将显示数字所在图片中的位置定出。为了简单起见,也可以固定摄像头与LCD相对位置,这样手工定标出结果字符位置也可以适用于后面测量结果。

▲ 液晶数字显示以及数字部分

这个问题简单之处在于所有字符都是等宽,而且对比度非常好,简单的分离就可以将所有的字符单独分离出来。由于摄像头位置固定,所以简单分割之后的字符之后少量的上下左右平移,没有旋转。对于图片位置、尺寸就不再进行归一化。这些差异最后有神经网络来弥补。

▲ 分割出的数字

液晶显示字符的图片对比度很好。但就是有一个问题,在摄像头拍摄的时候,经常会遇到字符变化过程,这就会使得图片中字符呈现两个字符叠加的情况。下面是一些示例:

▲ 数字变化过程的图片

这些过程,说实在的,即使人工识别也会无法分辨。

后面通过人工输入标注了2000多个样本。

2.图片二值化

对于分割的图片进行二值化,可以消除环境光对于图片亮度的影响。在一定程度上,也可以消除液晶字符在变化时所引起的模糊。

<<< 左右滑动见更多 >>>

上面所有的字符的尺寸是23乘以38点阵。


1.构建网络和训练

简单的实验,就用简单的方法。对于前面所得到的字符,不再人工定义它们的特征。仅仅将原来的彩色图片变换成灰度图像,然后排列成23×38=874维向量。然后增加一层中间隐层便组成了最简单的分类网络。

net = patternnet(11)

▲ 构造一个单隐层神经网络

将前面人工标注的样本一半用于训练,全部样本用于测试。下面给出了测试的结果。

plotconfusion(xx, net(yy))

▲ 训练结果

2.训练结果与分析

整体的错误率大约为:ERR= 2.99%。

下面是识别正确的字符。

▲ 识别正确的字符

下面给出了部分识别错误字符的情况。基本上都是一些拍摄到液晶字符在变化过程中的重叠字符情况。这些情况本身在人工标注的时候就存在模糊。

<<< 左右滑动见更多 >>>

3.网络结构与错误率

下面给出了网络的隐层节点个数与识别错误样本个数之间的关系。可以看到当中间隐层节点大于5之后,识别性能就不再有明显的变化了。

隐层节点个数 2 3 4 5 6 7 8 9 10 11
错误数量 1810 656 216 77 69 66 65 72 58 68
▲ 隐层节点个数与错误率

使用神经网络解决问题,不是寻找最强大的网络,而是需要最合适的网络。

通过上面的测试结果来看,简单的单隐层网络便可以很好的满足液晶显示数字识别。那么对于那些由于数字跳动所引起的错误该怎么处理呢?

这个问题如果仅仅依靠增加训练样本和改进网络结构是很难进行彻底解决,规避这个错误可以通过对连续识别结果进行比对来解决。对显示数字进行连续快速采集5帧图像,其中液晶跳动往往只发生在其中一帧,或者两帧。那么对于五个图像识别出的数字进行对比,找到相同次数最多的数字作为输出结果。

参考资料

[1]

LC100-A: https://zhuoqing.blog.csdn.net/article/details/108997475

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭