当前位置:首页 > 公众号精选 > 大鱼机器人
[导读]网上关于PID算法的文章很多,但是感觉有必要自己再进行一次总结,抽丝剥茧地重新认识了一下PID。

网上关于PID算法的文章很多,但是感觉有必要自己再进行一次总结,抽丝剥茧地重新认识了一下PID

  • 1 前言

  • 2 开环控制

  • 3 闭环控制

  • 4 PID

    • 4.1 系统架构

    • 4.2 理论基础

    • 4.3 离散化

    • 4.4 伪算法

  • 5 C++实现

  • 6 总结

1 前言

控制系统通常根据有没有反馈会分为开环系统和闭环系统,在闭环系统的控制中,PID算法非常强大,其三个部分分别为;

  • P:比例环节;
  • I:积分环节;
  • D:微分环节;

PID算法可以自动对控制系统进行准确且迅速的校正,因此被广泛地应用于工业控制系统。

2 开环控制

首先来看开环控制系统,如下图所示,隆哥蒙着眼,需要走到虚线旗帜所表示的目标位置,由于缺少反馈(眼睛可以感知当前距离和位置,由于眼睛被蒙上没有反馈,所以这也是一个开环系统),最终隆哥会较大概率偏离预期的目标,可能会运行到途中实线旗帜所表示的位置。

开环系统的整体结构如下所示;

这里做一个不是很恰当的比喻;

  • Input:告诉隆哥目标距离的直线位置( 10米);
  • Controller:隆哥大脑中计算出到达目标所需要 走多少步
  • Process:双腿作为执行机构,输出了相应的步数,但是最终仍然偏离了目标;

看来没有反馈的存在,很难准确到达目标位置。

3 闭环控制

所以为了准确到达目标位置,这里就需要引入反馈,具体如下图所示;

在这里继续举个不怎么恰当的比喻;隆哥重获光明之后,基本可以看到目标位置了;

  • 第一步 Input:告诉隆哥目标距离的直线位置( 10米);
  • 第二步 Controller:隆哥大脑中计算出到达目标所需要 走多少步
  • 第三步 Process:双腿作为执行机构,输出了相应的步数,但是最终仍然偏离了目标;
  • 第四步 Feedback通过视觉获取到目前已经前进的距离,(比如 前进了2米,那么还有 8米的偏差);
  • 第五步 err:根据 偏差重新计算所需要的步数,然后重复上述四个步骤,最终隆哥达到最终的目标位置。

4 PID

4.1 系统架构

虽然在反馈系统下,隆哥最终到达目标位置,但是现在又来了新的任务,就是又地到达目标位置。所以这里隆哥开始采用PID Controller,只要适当调整PID的参数,就可以到达目标位置,具体如下图所示;

隆哥为了最短时间内到达目标位置,进行了不断的尝试,分别出现了以下几种情况;

  • 跑得太快,最终导致冲过了目标位置还得往回跑
  • 跑得太慢,最终导致到达目标位置所用时间太长

经过不断的尝试,终于找到了最佳的方式,其过程大概如下图所示;这里依然举一个不是很恰当的比喻;

  • 第一步:得到与目标位置的距离偏差(比如最开始是 10米,后面会逐渐变小);
  • 第二步:根据误差,预估需要多少速度,如何估算呢,看下面几步;

P比例则是给定一个速度的大致范围,满足下面这个公式;

因此比例作用相当于某一时刻的偏差err)与比例系数 的乘积,具体如下所示;

比例作用

绿色线为上述例子中从初始位置到目标位置的距离变化;红色线为上述例子中从初始位置到目标位置的偏差变化,两者为互补的关系;


I积分则是误差在一定时间内的和,满足以下公式;

如下图所示;

红色曲线阴影部分面积即为积分作用的结果,其不断累积的误差,最终乘以积分系数 就得到了积分部分的输出;


D微分则是误差变化曲线某处的导数,或者说是某一点的斜率,因此这里需要引入微分;

从图中可知,当偏差变化过快,微分环节会输出较大的负数,作为抑制输出继续上升,从而抑制过冲。


综上, 分别增加其中一项参数会对系统造成的影响总结如下表所示;

参数 上升时间 超调量 响应时间 稳态误差 稳定性
Kp
减少 增加 小变化 减少 降级
Ki
减少 增加 增加 消除 降级
Kd
微小的变化 减少 减少 理论上没有影响 小,稳定性会提升

4.2 理论基础

上面扯了这么多,无非是为了初步理解PID在负反馈系统中的调节作用,下面开始推导一下算法实现的具体过程;PID控制器的系统框图如下所示;

图片来自Wiki

因此不难得出输入 和输出 的关系;

是比例增益; 是积分增益; 是微分增益;

4.3 离散化

在数字系统中进行PID算法控制,需要对上述算法进行离散化;假设系统采样时间为 则将输入 序列化得到;

将输出 序列化得到;

  • 比例项:
  • 积分项:
  • 微分项:

所以最终可以得到式①,也就是网上所说的位置式PID

将式①再做一下简化;

最终得到增量式PID的离散公式如下:

4.4 伪算法

这里简单总结一下增量式PID实现的伪算法;


previous_error := 0  //上一次偏差
integral := 0   //积分和

//循环 
//采样周期为dt
loop:
 //setpoint 设定值
 //measured_value 反馈值
    error := setpoint − measured_value //计算得到偏差
    integral := integral + error × dt //计算得到积分累加和
    derivative := (error − previous_error) / dt //计算得到微分
    output := Kp × error + Ki × integral + Kd × derivative //计算得到PID输出
    previous_error := error //保存当前偏差为下一次采样时所需要的历史偏差
    wait(dt) //等待下一次采用
    goto loop

5 C++实现

这里是增量式PID算法的C语言实现;

pid.cpp

#ifndef _PID_SOURCE_
#define _PID_SOURCE_

#include 
#include 
#include "pid.h"

using namespace std;

class PIDImpl
{

    public:
        PIDImpl( double dt, double max, double min, double Kp, double Kd, double Ki );
        ~PIDImpl();
        double calculatedouble setpoint, double pv );

    private:
        double _dt;
        double _max;
        double _min;
        double _Kp;
        double _Kd;
        double _Ki;
        double _pre_error;
        double _integral;
};


PID::PID( double dt, double max, double min, double Kp, double Kd, double Ki )
{
    pimpl = new PIDImpl(dt,max,min,Kp,Kd,Ki);
}
double PID::calculate( double setpoint, double pv )
{
    return pimpl->calculate(setpoint,pv);
}
PID::~PID() 
{
    delete pimpl;
}


/**
 * Implementation
 */

PIDImpl::PIDImpl( double dt, double max, double min, double Kp, double Kd, double Ki ) :
    _dt(dt),
    _max(max),
    _min(min),
    _Kp(Kp),
    _Kd(Kd),
    _Ki(Ki),
    _pre_error(0),
    _integral(0)
{
}

double PIDImpl::calculate( double setpoint, double pv )
{
    
    // Calculate error
    double error = setpoint - pv;

    // Proportional term
    double Pout = _Kp * error;

    // Integral term
    _integral += error * _dt;
    double Iout = _Ki * _integral;

    // Derivative term
    double derivative = (error - _pre_error) / _dt;
    double Dout = _Kd * derivative;

    // Calculate total output
    double output = Pout + Iout + Dout;

    // Restrict to max/min
    if( output > _max )
        output = _max;
    else if( output < _min )
        output = _min;

    // Save error to previous error
    _pre_error = error;

    return output;
}

PIDImpl::~PIDImpl()
{
}

#endif

pid.h

#ifndef _PID_H_
#define _PID_H_

class PIDImpl;
class PID
{

    public:
        // Kp -  proportional gain
        // Ki -  Integral gain
        // Kd -  derivative gain
        // dt -  loop interval time
        // max - maximum value of manipulated variable
        // min - minimum value of manipulated variable
        PID( double dt, double max, double min, double Kp, double Kd, double Ki );

        // Returns the manipulated variable given a setpoint and current process value
        double calculatedouble setpoint, double pv );
        ~PID();

    private:
        PIDImpl *pimpl;
};

#endif

pid_example.cpp

#include "pid.h"
#include 

int main() {

    PID pid = PID(0.1100-1000.10.010.5);

    double val = 20;
    for (int i = 0; i < 100; i++) {
        double inc = pid.calculate(0, val);
        printf("val:% 7.3f inc:% 7.3f\n", val, inc);
        val += inc;
    }

    return 0;
}

编译并测试;

g++ -c pid.cpp -o pid.o
# To compile example code:
g++ pid_example.cpp pid.o -o pid_example

6 总结

本文总结了PID控制器算法在闭环系统中根据偏差变化的具体调节作用,每个环节可能对系统输出造成什么样的变化,给出了位置式和增量式离散PID算法的推导过程,并给出了位置式算法的C++程序实现。

由于作者能力和水平有限,文中难免存在错误和纰漏,请不吝赐教。

-END-

往期好文合集

PID到底是个啥?来给你讲个故事
再论PID,PID其实很简单。。。

电子设计竞赛(4)-常用的两种PID算法

  最 后  

 
若觉得文章不错, 转发分享 ,也是我们继续更新的动力。
5T资源大放送! 包括但不限于: C/C++,Linux,Python,Java,PHP,人工智能,PCB、FPGA、DSP、labview、单片机、等等
在公众号内回复「更多资源」,即可免费获取,期待你的关注~

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭