C语言,动态展示经典排序算法
扫描二维码
随时随地手机看文章
排序算法 | 平均时间复杂度 | 最差时间复杂度 | 空间复杂度 | 数据对象稳定性 |
---|---|---|---|---|
冒泡排序 | O(n2) | O(n2) | O(1) | 稳定 |
选择排序 | O(n2) | O(n2) | O(1) | 数组不稳定、链表稳定 |
插入排序 | O(n2) | O(n2) | O(1) | 稳定 |
快速排序 | O(n*log2n) | O(n2) | O(log2n) | 不稳定 |
堆排序 | O(n*log2n) | O(n*log2n) | O(1) | 不稳定 |
归并排序 | O(n*log2n) | O(n*log2n) | O(n) | 稳定 |
希尔排序 | O(n*log2n) | O(n2) | O(1) | 不稳定 |
计数排序 | O(n+m) | O(n+m) | O(n+m) | 稳定 |
桶排序 | O(n) | O(n) | O(m) | 稳定 |
基数排序 | O(k*n) | O(n2) | 稳定 |
1 冒泡排序
-
比较相邻的元素。如果第一个比第二个大,就交换他们两个。 -
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。 -
针对所有的元素重复以上的步骤,除了最后一个。 -
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
代码:
void bubbleSort(int a[], int n)
{
for(int i =0 ; i< n-1; ++i)
{
for(int j = 0; j < n-i-1; ++j)
{
if(a[j] > a[j+1])
{
int tmp = a[j] ; //交换
a[j] = a[j+1] ;
a[j+1] = tmp;
}
}
}
}
2 选择排序
-
在未排序序列中找到最小(大)元素,存放到排序序列的起始位置 -
从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾 -
以此类推,直到所有元素均排序完毕
代码:
function selectionSort(arr) {
var len = arr.length;
var minIndex, temp;
for (var i = 0; i < len - 1; i++) {
minIndex = i;
for (var j = i + 1; j < len; j++) {
if (arr[j] < arr[minIndex]) { // 寻找最小的数
minIndex = j; // 将最小数的索引保存
}
}
temp = arr[i];
arr[i] = arr[minIndex];
arr[minIndex] = temp;
}
return arr;
}
3 插入排序
-
从第一个元素开始,该元素可以认为已经被排序 -
取出下一个元素,在已经排序的元素序列中从后向前扫描 -
如果该元素(已排序)大于新元素,将该元素移到下一位置 -
重复步骤3,直到找到已排序的元素小于或者等于新元素的位置 -
将新元素插入到该位置后 -
重复步骤2~5
代码:
void print(int a[], int n ,int i){
cout< for(int j= 0; j<8; j++){
cout< }
cout<}
void InsertSort(int a[], int n)
{
for(int i= 1; iif(a[i] < a[i-1]){ //若第i个元素大于i-1元素,直接插入。小于的话,移动有序表后插入
int j= i-1;
int x = a[i]; //复制为哨兵,即存储待排序元素
a[i] = a[i-1]; //先后移一个元素
while(x < a[j]){ //查找在有序表的插入位置
a[j+1] = a[j];
j--; //元素后移
}
a[j+1] = x; //插入到正确位置
}
print(a,n,i); //打印每趟排序的结果
}
}
int main(){
int a[15] = {2,3,4,5,15,19,16,27,36,38,44,46,47,48,50};
InsertSort(a,15);
print(a,15,15);
}
4 快速排序
-
选取第一个数为基准 -
将比基准小的数交换到前面,比基准大的数交换到后面 -
对左右区间重复第二步,直到各区间只有一个数
代码:
void QuickSort(vector & v, int low, int high) {
if (low >= high) // 结束标志
return;
int first = low; // 低位下标
int last = high; // 高位下标
int key = v[first]; // 设第一个为基准
while (first < last)
{
// 将比第一个小的移到前面
while (first < last && v[last] >= key)
last--;
if (first < last)
v[first++] = v[last];
// 将比第一个大的移到后面
while (first < last && v[first] <= key)
first++;
if (first < last)
v[last--] = v[first];
}
//
v[first] = key;
// 前半递归
QuickSort(v, low, first - 1);
// 后半递归
QuickSort(v, first + 1, high);
}
5 堆排序
-
将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区; -
将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n]; -
由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
代码:
#include
#include
using namespace std;
// 堆排序:(最大堆,有序区)。从堆顶把根卸出来放在有序区之前,再恢复堆。
void max_heapify(int arr[], int start, int end) {
//建立父节点指标和子节点指标
int dad = start;
int son = dad * 2 + 1;
while (son <= end) { //若子节点在范围内才做比较
if (son + 1 <= end && arr[son] < arr[son + 1]) //先比较两个子节点指标,选择最大的
son++;
if (arr[dad] > arr[son]) //如果父节点大于子节点代表调整完成,直接跳出函数
return;
else { //否则交换父子內容再继续子节点与孙节点比較
swap(arr[dad], arr[son]);
dad = son;
son = dad * 2 + 1;
}
}
}
void heap_sort(int arr[], int len) {
//初始化,i从最后一个父节点开始调整
for (int i = len / 2 - 1; i >= 0; i--)
max_heapify(arr, i, len - 1);
//先将第一个元素和已经排好的元素前一位做交换,再从新调整(刚调整的元素之前的元素),直到排序完成
for (int i = len - 1; i > 0; i--) {
swap(arr[0], arr[i]);
max_heapify(arr, 0, i - 1);
}
}
int main() {
int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };
int len = (int) sizeof(arr) / sizeof(*arr);
heap_sort(arr, len);
for (int i = 0; i < len; i++)
cout << arr[i] << ' ';
cout << endl;
return 0;
}
6 归并排序
代码:
void print(int a[], int n){
for(int j= 0; jcout< }
cout<}
//将r[i…m]和r[m +1 …n]归并到辅助数组rf[i…n]
void Merge(ElemType *r,ElemType *rf, int i, int m, int n)
{
int j,k;
for(j=m+1,k=i; i<=m && j <=n ; ++k){
if(r[j] < r[i]) rf[k] = r[j++];
else rf[k] = r[i++];
}
while(i <= m) rf[k++] = r[i++];
while(j <= n) rf[k++] = r[j++];
print(rf,n+1);
}
void MergeSort(ElemType *r, ElemType *rf, int lenght)
{
int len = 1;
ElemType *q = r ;
ElemType *tmp ;
while(len < lenght) {
int s = len;
len = 2 * s ;
int i = 0;
while(i+ lenMerge(q, rf, i, i+ s-1, i+ len-1 ); //对等长的两个子表合并
i = i+ len;
}
if(i + s < lenght){
Merge(q, rf, i, i+ s -1, lenght -1); //对不等长的两个子表合并
}
tmp = q; q = rf; rf = tmp; //交换q,rf,以保证下一趟归并时,仍从q 归并到rf
}
}
int main(){
int a[10] = {2,3,4,5,15,19,26,27,36,38,44,46,47,48,50};
int b[10];
MergeSort(a, b, 15);
print(b,15);
cout<<"结果:";
print(a,10);
}
7 希尔排序
-
选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1; -
按增量序列个数k,对序列进行k 趟排序; -
每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
代码:
void shell_sort(T array[], int length) {
int h = 1;
while (h < length / 3) {
h = 3 * h + 1;
}
while (h >= 1) {
for (int i = h; i < length; i++) {
for (int j = i; j >= h && array[j] < array[j - h]; j -= h) {
std::swap(array[j], array[j - h]);
}
}
h = h / 3;
}
}
8 计数排序
-
计数排序基于一个假设,待排序数列的所有数均为整数,且出现在(0,k)的区间之内。 -
如果 k(待排数组的最大值) 过大则会引起较大的空间复杂度,一般是用来排序 0 到 100 之间的数字的最好的算法,但是它不适合按字母顺序排序人名。 -
计数排序不是比较排序,排序的速度快于任何比较排序算法。
-
找出待排序的数组中最大和最小的元素; -
统计数组中每个值为 i 的元素出现的次数,存入数组 C 的第 i 项; -
对所有的计数累加(从 C 中的第一个元素开始,每一项和前一项相加); -
向填充目标数组:将每个元素 i 放在新数组的第 C[i] 项,每放一个元素就将 C[i] 减去 1;
代码:
#include
#include
#include
using namespace std;
// 计数排序
void CountSort(vector& vecRaw, vector & vecObj)
{
// 确保待排序容器非空
if (vecRaw.size() == 0)
return;
// 使用 vecRaw 的最大值 + 1 作为计数容器 countVec 的大小
int vecCountLength = (*max_element(begin(vecRaw), end(vecRaw))) + 1;
vectorvecCount(vecCountLength, 0);
// 统计每个键值出现的次数
for (int i = 0; i < vecRaw.size(); i++)
vecCount[vecRaw[i]]++;
// 后面的键值出现的位置为前面所有键值出现的次数之和
for (int i = 1; i < vecCountLength; i++)
vecCount[i] += vecCount[i - 1];
// 将键值放到目标位置
for (int i = vecRaw.size(); i > 0; i--) // 此处逆序是为了保持相同键值的稳定性
vecObj[--vecCount[vecRaw[i - 1]]] = vecRaw[i - 1];
}
int main()
{
vectorvecRaw = { 0,5,7,9,6,3,4,5,2,8,6,9,2,1 };
vectorvecObj(vecRaw.size(), 0);
CountSort(vecRaw, vecObj);
for (int i = 0; i < vecObj.size(); ++i)
cout << vecObj[i] << " ";
cout << endl;
return 0;
}
9 桶排序
-
设置一个定量的数组当作空桶子。 -
寻访序列,并且把项目一个一个放到对应的桶子去。 -
对每个不是空的桶子进行排序。 -
从不是空的桶子里把项目再放回原来的序列中。
代码:
function bucketSort(arr, bucketSize) {
if (arr.length === 0) {
return arr;
}
var i;
var minValue = arr[0];
var maxValue = arr[0];
for (i = 1; i < arr.length; i++) {
if (arr[i] < minValue) {
minValue = arr[i]; // 输入数据的最小值
} else if (arr[i] > maxValue) {
maxValue = arr[i]; // 输入数据的最大值
}
}
// 桶的初始化
var DEFAULT_BUCKET_SIZE = 5; // 设置桶的默认数量为5
bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;
var buckets = new Array(bucketCount);
for (i = 0; i < buckets.length; i++) {
buckets[i] = [];
}
// 利用映射函数将数据分配到各个桶中
for (i = 0; i < arr.length; i++) {
buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]);
}
arr.length = 0;
for (i = 0; i < buckets.length; i++) {
insertionSort(buckets[i]); // 对每个桶进行排序,这里使用了插入排序
for (var j = 0; j < buckets[i].length; j++) {
arr.push(buckets[i][j]);
}
}
return arr;
}
10 基数排序
-
取得数组中的最大数,并取得位数; -
arr为原始数组,从最低位开始取每个位组成radix数组; -
对radix进行计数排序(利用计数排序适用于小范围数的特点)
代码:
int maxbit(int data[], int n) //辅助函数,求数据的最大位数
{
int maxData = data[0]; ///< 最大数
/// 先求出最大数,再求其位数,这样有原先依次每个数判断其位数,稍微优化点。
for (int i = 1; i < n; ++i)
{
if (maxData < data[i])
maxData = data[i];
}
int d = 1;
int p = 10;
while (maxData >= p)
{
//p *= 10; // Maybe overflow
maxData /= 10;
++d;
}
return d;
/* int d = 1; //保存最大的位数
int p = 10;
for(int i = 0; i < n; ++i)
{
while(data[i] >= p)
{
p *= 10;
++d;
}
}
return d;*/
}
void radixsort(int data[], int n) //基数排序
{
int d = maxbit(data, n);
int *tmp = new int[n];
int *count = new int[10]; //计数器
int i, j, k;
int radix = 1;
for(i = 1; i <= d; i++) //进行d次排序
{
for(j = 0; j < 10; j++)
count[j] = 0; //每次分配前清空计数器
for(j = 0; j < n; j++)
{
k = (data[j] / radix) % 10; //统计每个桶中的记录数
count[k]++;
}
for(j = 1; j < 10; j++)
count[j] = count[j - 1] + count[j]; //将tmp中的位置依次分配给每个桶
for(j = n - 1; j >= 0; j--) //将所有桶中记录依次收集到tmp中
{
k = (data[j] / radix) % 10;
tmp[count[k] - 1] = data[j];
count[k]--;
}
for(j = 0; j < n; j++) //将临时数组的内容复制到data中
data[j] = tmp[j];
radix = radix * 10;
}
delete []tmp;
delete []count;
}
© 2020 GitHub, Inc.
精彩技术文章推荐
01 | 插入排序:最直观的排序算法 |
02 | 怎样才能学好编程?懂语法、多写、锻炼思维 |
03 | 单片机编程如何查看版本之间代码的不同:代码比较工具 |
04 | 你在编程时,都是怎样控制程序版本的呢? |
免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!