当前位置:首页 > 公众号精选 > strongerHuang
[导读]嵌入式软件代码中延时是很常见的,只是延时种类有很多,看你用什么延时。

作者 | strongerHuang

微信公众号 | 嵌入式专栏


嵌入式软件代码中延时是很常见的,只是延时种类有很多,看你用什么延时。


1

一个延时的问题

问题:周期性(固定一个时间)去处理某一件事情。你会通过什么方式去实现?

比如:间隔10ms去采集传感器的数据,然后通过一种算法计算出一个结果,最后通过串口发送出去。

可能对于很多习惯裸机编程的读者,首先想到的是:利用定时器,定时10ms中断,在中断里面处理。


中断函数适合处理简单数据,不适合算法、通信等需要长时间占用CPU的处理。


对计时精度要求比较高的地方适合定时器,像本章节说的周期性采集传感器数据,要求不适合很高,那么就引入本文说的绝对延时。


在实时操作系统FreeRTOS任务中,利用vTaskDelayUntil绝对延时即可完美解决这个问题。


2

相对延时和绝对延时的含义

本文拿FreeRTOS中相对延时函数vTaskDelay,绝对延时函数vTaskDelayUntil来说明。


相对延时: 指每次延时都是从执行函数vTaskDelay()开始,直到延时指定的时间(参数:滴答值)结束。
绝对延时: 指每隔指定的时间(参数:滴答值),执行一次调用vTaskDelayUntil()函数的任务。
文字描述可能不够直观理解,下面章节结合代码例子、延时值(IO高低变化波形)、任务执行图来详细讲述一下他们的区别。


3

相对延时和绝对延时区别

以实际代码为例说明:一个任务中,添加一个10ms系统延时,然后,在执行任务(耗时1ms左右,例子以延时代替)。


相对延时代码:
绝对延时代码:
说明: 1. TestDelay这个延时函数仅仅用于测试(延时1ms),用于代替采集、算法、发送等耗时时间。
2. 两个代码唯一区别在于系统延时不同,一个vTaskDelay(10);,一个vTaskDelayUntil(&xLastWakeTime, 10);
3. 系统时钟频率为1000,也就是上面系统延时10个滴答,即10ms。
看到代码,你想到了他们输出结果的差异吗? 来看下结果的差异:用PA0这个引脚输出的高低电平,得出延时时间。
相对延时结果:
绝对延时结果: 结果为: 相对延时的周期为系统延时10ms + 执行任务1ms的时间,总共11ms时间。绝对延时的周期即为10ms时间.


4

换一种方式看区别

如果上面的区别还没明白,再来讲一个更容易理解的区别,通过文字 + 任务执行图来说明。
1.相对延时 先看任务执行图,按照上面代码的方式呈现: 这里会牵涉到操作系统任务切换、高优先级任务抢占等一些原理,若不了解,请转移直到了解再回来。
上电,TEST任务进入延时(阻塞)状态,此时系统执行其他就绪任务。FreeRTOS内核会周期性的检查TEST任务的阻塞是否达到,如果阻塞时间达到,则将TEST任务设置为就绪状态,如果就绪任务中TEST任务的优先级最高,则会抢占CPU,再次执行任务主体代码,不断循环。
TEST任务每次系统延时都是从调用延时函数vTaskDelay()开始算起的,所以叫相对延时。
从上图可以看出: 如果执行TEST任务的过程中发生中断,或者具有更高优先级的任务抢占了,那么TEST任务执行的周期就会变长,所以使用相对延时函数vTaskDelay(),不能周期性的执行TEST任务。
2.绝对延时 代码中定义的变量xLastWakeTime,其实是用来保存上一次的系统计数器值(方便检测下一个延时时间是否到来)。
和上面相对延时程序执行图比较,可以看出,系统延时的时间包含了程序执行的时间。即时中途有中断,或更高优先级任务打断,不会影响下一次执行的时间(也就是这个周期不会变,当然,打断时间不能超过系统延时值)。
提示: 图片中添加了一段话:一般来说,程序执行时间要小于总间隔时间(10ms)。
如果打断时间太长,回来之后延时都超过了,则会立马执行程序,不会再延时(任务不会再阻塞延时)。

------------ END ------------


后台回复『RTOS』『FreeRTOS』阅读更多相关文章。
关注 微信公众号『嵌入式专栏』,底部菜单查看更多内容,回复“加群”按规则加入技术交流群。


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭