太阳能电池中的单晶PERC电池技术知识小解析
扫描二维码
随时随地手机看文章
在科技的发展道路上,离不开能源的助力,特别是再科技飞速发展的今天,而地球上的能源有限,就需要科研人员不断开发太阳能料电池。只有这样才能保证社会发展的能源供应。
目前,钝化发射极和背面电池(PassivatedEmitter and Rear Cell,PERC) 技术已成为光伏行业中提升晶硅太阳电池转换效率的主流高效技术。PERC 技术是通过在硅片的背面增加一层钝化层( 氧化铝或氧化硅),对硅片起到钝化的作用,可有效提升少子寿命。为了防止钝化层被破坏,影响钝化效果,还会在钝化层外面再镀一层氮化硅层。PERC 技术中引入的背面钝化可将电池背表面载流子的复合速率降至 50 cm/s 以下,表面悬挂键降至1011 eV•cm2 以下,因而可改善电池背面复合,提升电池的少子寿命。
2006年用于对P型PERC电池的背面的钝化的AlOx介质膜的钝化作用引起大家重视,使得PERC电池的产业化成为可能。随后随着沉积AlOx产业化制备技术和设备的成熟,加上激光技术的引入,PERC技术开始逐步走向产业化。2013年前后,开始有厂家导入PERC电池生产线,近几年PERC电池越来越引起行业重视,产能获得快速扩张。2017年全球预计新增产能6.5GW,从现有标准电池线升级2.5GW,预计至2017年底,全球PERC电池产能将达到20GW。
perc技术通过在电池的后侧上添加一个电介质钝化层来提高转换效率。标准电池结构中更好的效率水平受限于光生电子重组的趋势。PERC电池最大化跨越了P-N结的电势梯度,这使得电子更稳定的流动,减少电子重组,以及更高的效率水平。
此外,PERC 单晶硅太阳电池的背面叠层钝化膜起到了背反射器的作用,可将更多的长波长的光反射回电池,从而提升电池的长波响应。但是由于PERC 单晶硅太阳电池的背钝化层为绝缘层,无法与铝背场形成电极通路,因而,需要通过激光在硅片背面开槽,形成PERC 单晶硅太阳电池的局部背表面场(local back surface field,LBSF)。
在短短几年中,PERC电池大面积可量产效率持续攀升,单晶PERC电池产线效率普遍达到21-21.5%,多晶达到20-20.5%左右。工业化大面积单晶PERC和多晶PERC电池的最高转换效率分别达到22.6%和21.63%。
PERC技术的优势还体现在与其他高效电池和组件技术兼容,持续提升效率和发电能力的潜力。通过与多主栅、选择性发射极和TOPCon等技术的叠加,PERC电池效率可以进一步提升;组合金刚线切割和黑硅技术,可以提高多晶电池性价比。而双面PERC电池在几乎不增加成本的情况下实现双面发电,在系统端实现10%-25%的发电增益,极大地增强了PERC技术的竞争力与未来发展潜力。
现阶段激光开槽通常选用波长为532 nm 的激光器,可将背面表层的一部分氮化硅层消融( 这个过程也称为激光开槽过程),之后在硅片的背面完成浆料印刷,并进行高温烧结。由于在激光开槽区域无氮化硅层的阻挡,铝浆可直接穿透钝化层和硅接触,并在高温烧结条件下,与硅基体形成铝硅合金,从而降低串联电阻,顺利导出电流。
以上就是PERC电池技术解析,在现在的生活中,太阳能产品处处可见,人们用太阳能煮饭,还有太阳能热水器等等,无处不见太阳能产品,当然,最重要的还是太阳能发电,但是目前的技术并不能让人们很好利用太阳能发电。