状态机思路在嵌入式开发中的应用说明及注意事项
扫描二维码
随时随地手机看文章
来源 | 玩转嵌入式
编排 | strongerHuang
学单片机开发的同学,基本都是从裸机开始的,裸机中一般都会使用到状态机。
可能很多人认为裸机中状态机比较low,怎么也要搞一个RTOS,更甚着要跑Linux才觉得高大上。其实,这都是误区,适合自己的才是最好的,做产品也一样,满足需求很重要。
目前裸机状态机依然很流行,我并不会觉得裸机很low,而且之前都还用状态机开发过好几款产品。
下面就来讲讲状态机的内容:
比如:一个按键命令解析程序,就可以被看做状态机:本来在A状态下,触发一个按键后切换到了B状态;再触发另一个键后切换到C状态,或者返回到A状态。这就是最简单的按键状态机例子。实际的按键解析程序会比这更复杂些,但这不影响我们对状态机的认识。
进一步看,按键动作本身也可以看做一个状态机,一个细小的按键动作包含了:释放、抖动、闭合、抖动和重新释放等状态。
同样,一个串行通信的时序(不管它是遵循何种协议,标准串口也好、I2C也好;也不管它是有线的、还是红外的、无线的)也都可以看做由一系列有限的状态构成。
显示扫描程序也是状态机;通信命令解析程序也是状态机;甚至连继电器的吸合/释放控制、发光管(LED)的亮/灭控制又何尝不是个状态机。
当我们打开思路,把状态机作为一种思想导入到程序中去时,就会找到解决问题的一条有效的捷径。有时候用状态机的思维去思考程序该干什么,比用控制流程的思维去思考,可能会更有效。这样一来状态机便有了更实际的功用。
程序其实就是状态机:
也许你还不理解上面这句话。请想想看,计算机的大厦不就是建立在“0”和“1”两个基本状态的地基之上么?
状态机可归纳为4个要素,即现态、条件、动作、次态。这样的归纳,主要是出于对状态机的内在因果关系的考虑。“现态”和“条件”是因,“动作”和“次态”是果。详解如下:
现态
是指当前所处的状态。
条件
又称为“事件”。当一个条件被满足,将会触发一个动作,或者执行一次状态的迁移。
动作
条件满足后执行的动作。动作执行完毕后,可以迁移到新的状态,也可以仍旧保持原状态。动作不是必需的,当条件满足后,也可以不执行任何动作,直接迁移到新状态。
次态
条件满足后要迁往的新状态。“次态”是相对于“现态”而言的,“次态”一旦被激活,就转变成新的“现态”了。
如果我们进一步归纳,把“现态”和“次态”统一起来,而把“动作”忽略(降格处理),则只剩下两个最关键的要素,即:状态、迁移条件。
状态机的表示方法有许多种,我们可以用文字、图形或表格的形式来表示一个状态机。
纯粹用文字描述是很低效的,所以就不介绍了,接下来先介绍图形的方式。
状态框
用方框表示状态,包括所谓的“现态”和“次态”。
条件及迁移箭头
用箭头表示状态迁移的方向,并在该箭头上标注触发条件。
节点圆圈
当多个箭头指向一个状态时,可以用节点符号(小圆圈)连接汇总。
动作框
用椭圆框表示。
附加条件判断框
用六角菱形框表示。
状态迁移图和我们常见的流程图相比有着本质的区别,具体体现为:在流程图中,箭头代表了程序PC指针的跳转;而在状态迁移图中,箭头代表的是状态的改变。
我们会发现,这种状态迁移图比普通程序流程图更简练、直观、易懂。这正是我们需要达到的目的。
表1就是前面介绍的那张状态迁移图的另一种描述形式。
采用表格方式来描述状态机,优点是可容纳更多的文字信息。例如,我们不但可以在状态迁移表中描述状态的迁移关系,还可以把每个状态的特征描述也包含在内。
如果表格内容较多,过于臃肿不利于阅读,我们也可以将状态迁移表进行拆分。经过拆分后的表格根据其具体内容,表格名称也有所变化。
比如,我们可以把状态特征和迁移关系分开列表。被单独拆分出来的描述状态特征的表格,也可以称为“状态真值表”。这其中比较常见的就是把每个状态的显示内容单独列表。这种描述每个状态显示内容的表称之为“显示真值表”。同样,我们把单独表述基于按键的状态迁移表称为“按键功能真值表”。另外,如果每一个状态包含的信息量过多,我们也可以把每个状态单独列表。
由此可见,状态迁移表作为状态迁移图的有益补充,它的表现形式是灵活的。
状态迁移表优点是信息涵盖面大,缺点是视觉上不够直观,因此它并不能取代状态迁移图。比较理想的是将图形和表格结合应用。用图形展现宏观,用表格说明细节。二者互为参照,相得益彰。
把这张图稍做归纳,就可以得到它的另一种表现形式——状态迁移表,如表2所示。
表2时钟程序状态迁移表
基于状态机的程序调度机制,其应用的难点并不在于对状态机概念的理解,而在于对系统工作状态的合理划分。
初学者往往会把某个“程序动作”当作是一种“状态”来处理。我称之为“伪态”。那么如何区分“动作”和“状态”。本匠人的心得是看二者的本质:
“动作”是不稳定的,即使没有条件的触发,“动作”一旦执行完毕就结束了;
而“状态”是相对稳定的,如果没有外部条件的触发,一个状态会一直持续下去。
初学者的另一种比较致命的错误,就是在状态划分时漏掉一些状态。我称之为“漏态”。
伪态和漏态这两种错误的存在,将会导致程序结构的涣散。因此要特别小心避免。
前面介绍的是一种简单的状态结构。它只有一级,并且只有一维,如图3所示。
图3 线性状态机结构
如果有必要,我们可以建立更复杂的状态机模型。
1.多级状态结构
状态机可以是多级的。在分层的多级状态机系统里面,一个“父状态”下可以划分多个“子状态”,这些子状态共同拥有上级父状态的某些共性,同时又各自拥有自己的一些个性。
在某些状态下,还可以进一步划分子状态。比如,我们可以把前面的时钟例子修改如下: 把所有和时钟功能有关的状态,合并成1个一级状态。在这个状态下,又可以划分出3个二级子状态,分别为显示时间、设置小时、设置分钟;
同样,我们也可以把所有和闹钟功能有关的状态,合并成1个一级状态。在这个状态下,再划分出4个二级子状态,分别为显示闹钟、设置“时”、设置“分”、设置鸣叫时间。
我们需要用另一个状态变量(寄存器)来表示这些子状态。
子状态下面当然还可以有更低一级的孙状态(子子孙孙无穷尽也),从而将整个状态体系变成了树状多级状态结构,如图4所示。
图4树状多级状态结构
2.多维状态结构
状态结构也可以是多维的。从不同的角度对系统进行状态的划分,这些状态的某些特性是交叉的。比如,在按照按键和显示划分状态的同时,又按照系统的工作进程做出另一种状态划分。这两种状态划分同时存在,相互交叉,从而构成了二维的状态结构空间。
举一个这方面的例子,如:空调遥控器,如图5所示。
图5多维状态机结构
同样,我们也可以构建三维、四维甚至更多维的状态结构。每一维的状态都需要用一个状态变量(寄存器)来表示。
无论多级状态结构和多维状态结构看上去多么迷人,匠人的忠告是:我们依然要尽可能地简化状态结构,能用单级、单维的结构,就不要给自己找事,去玩那噩梦般的复杂结构。
免责声明: 本文素材来源网络,版权归原作者所有。如涉及作品版权问题,请与我联系删除。
免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!