当前位置:首页 > 公众号精选 > 嵌入式大杂烩
[导读]点击上C语言实现面向对象编程(附代码),分享了一些概念及基础例子。


前言


前面分享了:干货 | C语言实现面向对象编程(附代码),分享了一些概念及基础例子。这不,给大家找来了嵌入式中的编程实例:C语言使用面向对象实现IIC驱动。

一.简述

使用面向对象的编程思想封装IIC驱动,将IIC的属性和操作封装成一个库,在需要创建一个IIC设备时只需要实例化一个IIC对象即可,本文是基于STM32和HAL库做进一步封装的。

底层驱动方法不重要,封装的思想很重要。在完成对IIC驱动的封装之后借助继承特性实现AT24C64存储器的驱动开发,仍使用面向对象的思想封装AT24C64驱动。

二.IIC驱动面向对象封装

iic.h头文件主要是类模板的定义,具体如下:

//定义IIC类 typedef struct IIC_Type { //属性 GPIO_TypeDef  *GPIOx_SCL; //GPIO_SCL所属的GPIO组(如:GPIOA) GPIO_TypeDef  *GPIOx_SDA; //GPIO_SDA所属的GPIO组(如:GPIOA) uint32_t GPIO_SCL; //GPIO_SCL的IO引脚(如:GPIO_PIN_0) uint32_t GPIO_SDA; //GPIO_SDA的IO引脚(如:GPIO_PIN_0) //操作 void (*IIC_Init)(const struct IIC_Type*); //IIC_Init void (*IIC_Start)(const struct IIC_Type*); //IIC_Start void (*IIC_Stop)(const struct IIC_Type*); //IIC_Stop uint8_t (*IIC_Wait_Ack)(const struct IIC_Type*); //IIC_Wait_ack,返回wait失败或是成功 void (*IIC_Ack)(const struct IIC_Type*); //IIC_Ack,IIC发送ACK信号 void (*IIC_NAck)(const struct IIC_Type*); //IIC_NAck,IIC发送NACK信号 void (*IIC_Send_Byte)(const struct IIC_Type*,uint8_t); //IIC_Send_Byte,入口参数为要发送的字节 uint8_t (*IIC_Read_Byte)(const struct IIC_Type*,uint8_t); //IIC_Send_Byte,入口参数为是否要发送ACK信号 void (*delay_us)(uint32_t); //us延时 }IIC_TypeDef;


iic.c源文件主要是类模板具体操作函数的实现,具体如下:

//设置SDA为输入模式 static void SDA_IN(const struct IIC_Type* IIC_Type_t) { uint8_t io_num = 0; //定义io Num号 switch(IIC_Type_t->GPIO_SDA)
  { case GPIO_PIN_0:
    io_num = 0; break; case GPIO_PIN_1:
    io_num = 1; break; case GPIO_PIN_2:
    io_num = 2; break; case GPIO_PIN_3:
    io_num = 3; break; case GPIO_PIN_4:
    io_num = 4; break; case GPIO_PIN_5:
    io_num = 5; break; case GPIO_PIN_6:
    io_num = 6; break; case GPIO_PIN_7:
    io_num = 7; break; case GPIO_PIN_8:
    io_num = 8; break; case GPIO_PIN_9:
    io_num = 9; break; case GPIO_PIN_10:
    io_num = 10; break; case GPIO_PIN_11:
    io_num = 11; break; case GPIO_PIN_12:
    io_num = 12; break; case GPIO_PIN_13:
    io_num = 13; break; case GPIO_PIN_14:
    io_num = 14; break; case GPIO_PIN_15:
    io_num = 15; break;
  }
  IIC_Type_t->GPIOx_SDA->MODER&=~(3<<(io_num*2)); //将GPIOx_SDA->GPIO_SDA清零 IIC_Type_t->GPIOx_SDA->MODER|=0<<(io_num*2); //将GPIOx_SDA->GPIO_SDA设置为输入模式 } //设置SDA为输出模式 static void SDA_OUT(const struct IIC_Type* IIC_Type_t) { uint8_t io_num = 0; //定义io Num号 switch(IIC_Type_t->GPIO_SDA)
  { case GPIO_PIN_0:
    io_num = 0; break; case GPIO_PIN_1:
    io_num = 1; break; case GPIO_PIN_2:
    io_num = 2; break; case GPIO_PIN_3:
    io_num = 3; break; case GPIO_PIN_4:
    io_num = 4; break; case GPIO_PIN_5:
    io_num = 5; break; case GPIO_PIN_6:
    io_num = 6; break; case GPIO_PIN_7:
    io_num = 7; break; case GPIO_PIN_8:
    io_num = 8; break; case GPIO_PIN_9:
    io_num = 9; break; case GPIO_PIN_10:
    io_num = 10; break; case GPIO_PIN_11:
    io_num = 11; break; case GPIO_PIN_12:
    io_num = 12; break; case GPIO_PIN_13:
    io_num = 13; break; case GPIO_PIN_14:
    io_num = 14; break; case GPIO_PIN_15:
    io_num = 15; break;
  }
  IIC_Type_t->GPIOx_SDA->MODER&=~(3<<(io_num*2)); //将GPIOx_SDA->GPIO_SDA清零 IIC_Type_t->GPIOx_SDA->MODER|=1<<(io_num*2); //将GPIOx_SDA->GPIO_SDA设置为输出模式 } //设置SCL电平 static void IIC_SCL(const struct IIC_Type* IIC_Type_t,int n) { if(n == 1)
  {
    HAL_GPIO_WritePin(IIC_Type_t->GPIOx_SCL,IIC_Type_t->GPIO_SCL,GPIO_PIN_SET); //设置SCL为高电平 } else{
    HAL_GPIO_WritePin(IIC_Type_t->GPIOx_SCL,IIC_Type_t->GPIO_SCL,GPIO_PIN_RESET); //设置SCL为低电平 }
} //设置SDA电平 static void IIC_SDA(const struct IIC_Type* IIC_Type_t,int n) { if(n == 1)
  {
    HAL_GPIO_WritePin(IIC_Type_t->GPIOx_SDA,IIC_Type_t->GPIO_SDA,GPIO_PIN_SET); //设置SDA为高电平 } else{
    HAL_GPIO_WritePin(IIC_Type_t->GPIOx_SDA,IIC_Type_t->GPIO_SDA,GPIO_PIN_RESET); //设置SDA为低电平 }
} //读取SDA电平 static uint8_t READ_SDA(const struct IIC_Type* IIC_Type_t) { return HAL_GPIO_ReadPin(IIC_Type_t->GPIOx_SDA,IIC_Type_t->GPIO_SDA); //读取SDA电平 } //IIC初始化 static void IIC_Init_t(const struct IIC_Type* IIC_Type_t) {
      GPIO_InitTypeDef GPIO_Initure; //根据GPIO组初始化GPIO时钟 if(IIC_Type_t->GPIOx_SCL == GPIOA || IIC_Type_t->GPIOx_SDA == GPIOA)
   {
     __HAL_RCC_GPIOA_CLK_ENABLE(); //使能GPIOA时钟 } if(IIC_Type_t->GPIOx_SCL == GPIOB || IIC_Type_t->GPIOx_SDA == GPIOB)
   {
     __HAL_RCC_GPIOB_CLK_ENABLE(); //使能GPIOB时钟 } if(IIC_Type_t->GPIOx_SCL == GPIOC || IIC_Type_t->GPIOx_SDA == GPIOC)
   {
     __HAL_RCC_GPIOC_CLK_ENABLE(); //使能GPIOC时钟 } if(IIC_Type_t->GPIOx_SCL == GPIOD || IIC_Type_t->GPIOx_SDA == GPIOD)
   {
     __HAL_RCC_GPIOD_CLK_ENABLE(); //使能GPIOD时钟 } if(IIC_Type_t->GPIOx_SCL == GPIOE || IIC_Type_t->GPIOx_SDA == GPIOE)
   {
     __HAL_RCC_GPIOE_CLK_ENABLE(); //使能GPIOE时钟 } if(IIC_Type_t->GPIOx_SCL == GPIOH || IIC_Type_t->GPIOx_SDA == GPIOH)
   {
     __HAL_RCC_GPIOH_CLK_ENABLE(); //使能GPIOH时钟 } //GPIO_SCL初始化设置 GPIO_Initure.Pin=IIC_Type_t->GPIO_SCL;
     GPIO_Initure.Mode=GPIO_MODE_OUTPUT_PP; //推挽输出 GPIO_Initure.Pull=GPIO_PULLUP; //上拉 GPIO_Initure.Speed=GPIO_SPEED_FREQ_VERY_HIGH; //快速 HAL_GPIO_Init(IIC_Type_t->GPIOx_SCL,&GPIO_Initure); //GPIO_SDA初始化设置 GPIO_Initure.Pin=IIC_Type_t->GPIO_SDA;
     GPIO_Initure.Mode=GPIO_MODE_OUTPUT_PP; //推挽输出 GPIO_Initure.Pull=GPIO_PULLUP; //上拉 GPIO_Initure.Speed=GPIO_SPEED_FREQ_VERY_HIGH; //快速 HAL_GPIO_Init(IIC_Type_t->GPIOx_SDA,&GPIO_Initure); //SCL与SDA的初始化均为高电平 IIC_SCL(IIC_Type_t,1);
       IIC_SDA(IIC_Type_t,1);
} //IIC Start static void IIC_Start_t(const struct IIC_Type* IIC_Type_t) {
  SDA_OUT(IIC_Type_t); //sda线输出 IIC_SDA(IIC_Type_t,1);      
  IIC_SCL(IIC_Type_t,1);
  IIC_Type_t->delay_us(4);
   IIC_SDA(IIC_Type_t,0); //START:when CLK is high,DATA change form high to low  IIC_Type_t->delay_us(4);
  IIC_SCL(IIC_Type_t,0); //钳住I2C总线,准备发送或接收数据  } //IIC Stop static void IIC_Stop_t(const struct IIC_Type* IIC_Type_t) {
  SDA_OUT(IIC_Type_t); //sda线输出 IIC_SCL(IIC_Type_t,0);
  IIC_SDA(IIC_Type_t,0); //STOP:when CLK is high DATA change form low to high IIC_Type_t->delay_us(4);
  IIC_SCL(IIC_Type_t,1); 
  IIC_SDA(IIC_Type_t,1); //发送I2C总线结束信号 IIC_Type_t->delay_us(4); 
} //IIC_Wait_ack 返回HAL_OK表示wait成功,返回HAL_ERROR表示wait失败 static uint8_t IIC_Wait_Ack_t(const struct IIC_Type* IIC_Type_t) //IIC_Wait_ack,返回wait失败或是成功 { uint8_t ucErrTime = 0;
  SDA_IN(IIC_Type_t); //SDA设置为输入  IIC_SDA(IIC_Type_t,1);IIC_Type_t->delay_us(1);   
  IIC_SCL(IIC_Type_t,1);IIC_Type_t->delay_us(1); while(READ_SDA(IIC_Type_t))
  {
    ucErrTime++; if(ucErrTime>250)
    {
      IIC_Type_t->IIC_Stop(IIC_Type_t); return HAL_ERROR;
    }
  }
  IIC_SCL(IIC_Type_t,0);//时钟输出0  return HAL_OK;  
} //产生ACK应答 static void IIC_Ack_t(const struct IIC_Type* IIC_Type_t) {
  IIC_SCL(IIC_Type_t,0);
  SDA_OUT(IIC_Type_t);
  IIC_SDA(IIC_Type_t,0);
  IIC_Type_t->delay_us(2);  
  IIC_SCL(IIC_Type_t,1);
  IIC_Type_t->delay_us(2);  
  IIC_SCL(IIC_Type_t,0);
} //产生NACK应答 static void IIC_NAck_t(const struct IIC_Type* IIC_Type_t) {
  IIC_SCL(IIC_Type_t,0);
  SDA_OUT(IIC_Type_t);
  IIC_SDA(IIC_Type_t,1);
  IIC_Type_t->delay_us(2);  
  IIC_SCL(IIC_Type_t,1);
  IIC_Type_t->delay_us(2);  
  IIC_SCL(IIC_Type_t,0);
} //IIC_Send_Byte,入口参数为要发送的字节 static void IIC_Send_Byte_t(const struct IIC_Type* IIC_Type_t,uint8_t txd) { uint8_t t = 0;   
     SDA_OUT(IIC_Type_t);      
     IIC_SCL(IIC_Type_t,0);//拉低时钟开始数据传输 for(t=0;t<8;t++)
     {              
          IIC_SDA(IIC_Type_t,(txd&0x80)>>7);
          txd <<= 1;    
       IIC_Type_t->delay_us(2); //对TEA5767这三个延时都是必须的 IIC_SCL(IIC_Type_t,1);
       IIC_Type_t->delay_us(2);  
       IIC_SCL(IIC_Type_t,0); 
       IIC_Type_t->delay_us(2);  
     }  
} //IIC_Send_Byte,入口参数为是否要发送ACK信号 static uint8_t IIC_Read_Byte_t(const struct IIC_Type* IIC_Type_t,uint8_t ack) { uint8_t i,receive = 0;
   SDA_IN(IIC_Type_t);//SDA设置为输入 for(i=0;i<8;i++ )
   {
      IIC_SCL(IIC_Type_t,0); 
      IIC_Type_t->delay_us(2);
      IIC_SCL(IIC_Type_t,1);
      receive<<=1; if(READ_SDA(IIC_Type_t))receive++;   
      IIC_Type_t->delay_us(1);
   } if (!ack)
         IIC_Type_t->IIC_NAck(IIC_Type_t);//发送nACK else IIC_Type_t->IIC_Ack(IIC_Type_t); //发送ACK  return receive;
} //实例化一个IIC1外设,相当于一个结构体变量,可以直接在其他文件中使用 IIC_TypeDef IIC1 = {
  .GPIOx_SCL = GPIOA, //GPIO组为GPIOA .GPIOx_SDA = GPIOA, //GPIO组为GPIOA .GPIO_SCL = GPIO_PIN_5, //GPIO为PIN5 .GPIO_SDA = GPIO_PIN_6, //GPIO为PIN6 .IIC_Init = IIC_Init_t,
  .IIC_Start = IIC_Start_t,
  .IIC_Stop = IIC_Stop_t,
  .IIC_Wait_Ack = IIC_Wait_Ack_t,
  .IIC_Ack = IIC_Ack_t,
  .IIC_NAck = IIC_NAck_t,
  .IIC_Send_Byte = IIC_Send_Byte_t,
  .IIC_Read_Byte = IIC_Read_Byte_t,
  .delay_us = delay_us //需自己外部实现delay_us函数 };

上述就是IIC驱动的封装,由于没有应用场景暂不测试其实用性,待下面ATC64的驱动缝缝扎黄写完之后一起测试使用。

三.ATC64XX驱动封装实现

at24cxx.h头文件主要是类模板的定义,具体如下:

// 以下是共定义个具体容量存储器的容量 #define AT24C01  127 #define AT24C02  255 #define AT24C04  511 #define AT24C08  1023 #define AT24C16  2047 #define AT24C32  4095 #define AT24C64   8191 //8KBytes #define AT24C128 16383 #define AT24C256 32767  //定义AT24CXX类 typedef struct AT24CXX_Type { //属性 u32 EEP_TYPE; //存储器类型(存储器容量) //操作 IIC_TypeDef IIC; //IIC驱动 uint8_t (*AT24CXX_ReadOneByte)(const struct AT24CXX_Type*,uint16_t); //指定地址读取一个字节 void (*AT24CXX_WriteOneByte)(const struct AT24CXX_Type*,uint16_t,uint8_t); //指定地址写入一个字节 void (*AT24CXX_WriteLenByte)(uint16_t,uint32_t,uint8_t); //指定地址开始写入指定长度的数据 uint32_t (*AT24CXX_ReadLenByte)(uint16_t,uint8_t); //指定地址开始读取指定长度数据 void (*AT24CXX_Write)(uint16_t,uint8_t *,uint16_t); //指定地址开始写入指定长度的数据 void (*AT24CXX_Read)(uint16_t,uint8_t *,uint16_t); //指定地址开始写入指定长度的数据 void (*AT24CXX_Init)(const struct AT24CXX_Type*); //初始化IIC uint8_t (*AT24CXX_Check)(const struct AT24CXX_Type*); //检查器件 }AT24CXX_TypeDef; extern AT24CXX_TypeDef AT24C_64; //外部声明实例化AT24CXX对象 
			

at24cxx.c源文件主要是类模板具体操作函数的实现,具体如下:

//在AT24CXX指定地址读出一个数据 //ReadAddr:开始读数的地址  //返回值  :读到的数据 static uint8_t AT24CXX_ReadOneByte_t(const struct AT24CXX_Type* AT24CXX_Type_t,uint16_t ReadAddr) { uint8_t temp=0;                          
  AT24CXX_Type_t->IIC.IIC_Start(&AT24CXX_Type_t->IIC); //根据AT的型号发送不同的地址 if(AT24CXX_Type_t->EEP_TYPE > AT24C16)
  {
    AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0); //发送写命令 AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
    AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,ReadAddr>>8);//发送高地址  }else AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0+((ReadAddr/256)<<1)); //发送器件地址0XA0,写数据  AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC); 
  AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,ReadAddr%256); //发送低地址 AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);     
  AT24CXX_Type_t->IIC.IIC_Start(&AT24CXX_Type_t->IIC);        
  AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA1); //进入接收模式  AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);  
  temp=AT24CXX_Type_t->IIC.IIC_Read_Byte(&AT24CXX_Type_t->IIC,0);     
  AT24CXX_Type_t->IIC.IIC_Stop(&AT24CXX_Type_t->IIC);//产生一个停止条件  return temp;
} //在AT24CXX指定地址写入一个数据 //WriteAddr  :写入数据的目的地址  //DataToWrite:要写入的数据 static void AT24CXX_WriteOneByte_t(const struct AT24CXX_Type* AT24CXX_Type_t,uint16_t WriteAddr,uint8_t DataToWrite) {                                
   AT24CXX_Type_t->IIC.IIC_Start(&AT24CXX_Type_t->IIC); if(AT24CXX_Type_t->EEP_TYPE > AT24C16)
  {
    AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0); //发送写命令 AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
    AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,WriteAddr>>8);//发送高地址  }else AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0+((WriteAddr/256)<<1)); //发送器件地址0XA0,写数据  AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC); 
   AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,WriteAddr%256); //发送低地址 AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);               
  AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,DataToWrite); //发送字节  AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);            
   AT24CXX_Type_t->IIC.IIC_Stop(&AT24CXX_Type_t->IIC);//产生一个停止条件  AT24CXX_Type_t->IIC.delay_us(10000);  
} //在AT24CXX里面的指定地址开始写入长度为Len的数据 //该函数用于写入16bit或者32bit的数据. //WriteAddr  :开始写入的地址  //DataToWrite:数据数组首地址 //Len        :要写入数据的长度2,4 static void AT24CXX_WriteLenByte_t(uint16_t WriteAddr,uint32_t DataToWrite,uint8_t Len) { uint8_t t; for(t=0;t>(8*t))&0xff);
  }                
} //在AT24CXX里面的指定地址开始读出长度为Len的数据 //该函数用于读出16bit或者32bit的数据. //ReadAddr   :开始读出的地址  //返回值     :数据 //Len        :要读出数据的长度2,4 static uint32_t AT24CXX_ReadLenByte_t(uint16_t ReadAddr,uint8_t Len) { uint8_t t; uint32_t temp=0; for(t=0;t8;
     temp+=AT24CXX_ReadOneByte(ReadAddr+Len-t-1);          
  } return temp;                
} //在AT24CXX里面的指定地址开始写入指定个数的数据 //WriteAddr :开始写入的地址 对24c64为0~8191 //pBuffer   :数据数组首地址 //NumToWrite:要写入数据的个数 static void AT24CXX_Write_t(uint16_t WriteAddr,uint8_t *pBuffer,uint16_t NumToWrite) { while(NumToWrite--)
  {
   AT24CXX_WriteOneByte(WriteAddr,*pBuffer);
    WriteAddr++;
    pBuffer++;
  }
} //在AT24CXX里面的指定地址开始读出指定个数的数据 //ReadAddr :开始读出的地址 对24c64为0~8191 //pBuffer  :数据数组首地址 //NumToRead:要读出数据的个数 static void AT24CXX_Read_t(uint16_t ReadAddr,uint8_t *pBuffer,uint16_t NumToRead) { while(NumToRead)
  {
    *pBuffer++=AT24CXX_ReadOneByte(ReadAddr++); 
    NumToRead--;
  }
} //初始化IIC接口 static void AT24CXX_Init_t(const struct AT24CXX_Type* AT24CXX_Type_t) {
  AT24CXX_Type_t->IIC.IIC_Init(&AT24CXX_Type_t->IIC);//IIC初始化 } //检查器件,返回0表示检测成功,返回1表示检测失败 static uint8_t AT24CXX_Check_t(const struct AT24CXX_Type* AT24CXX_Type_t) { uint8_t temp;
  temp = AT24CXX_Type_t->AT24CXX_ReadOneByte(AT24CXX_Type_t,AT24CXX_Type_t->EEP_TYPE);//避免每次开机都写AT24CXX  if(temp == 0X33)return 0; else//排除第一次初始化的情况 {
      AT24CXX_Type_t->AT24CXX_WriteOneByte(AT24CXX_Type_t,AT24CXX_Type_t->EEP_TYPE,0X33);
       temp = AT24CXX_Type_t->AT24CXX_ReadOneByte(AT24CXX_Type_t,AT24CXX_Type_t->EEP_TYPE); if(temp==0X33)return 0;
  } return 1;  
} //实例化AT24CXX对象 AT24CXX_TypeDef AT24C_64={
 .EEP_TYPE = AT24C64, //存储器类型(存储器容量) //操作 .IIC={
  .GPIOx_SCL = GPIOA,
  .GPIOx_SDA = GPIOA,
  .GPIO_SCL = GPIO_PIN_5,
  .GPIO_SDA = GPIO_PIN_6,
  .IIC_Init = IIC_Init_t,
  .IIC_Start = IIC_Start_t,
  .IIC_Stop = IIC_Stop_t,
  .IIC_Wait_Ack = IIC_Wait_Ack_t,
  .IIC_Ack = IIC_Ack_t,
  .IIC_NAck = IIC_NAck_t,
  .IIC_Send_Byte = IIC_Send_Byte_t,
  .IIC_Read_Byte = IIC_Read_Byte_t,
  .delay_us = delay_us
 }, //IIC驱动 .AT24CXX_ReadOneByte = AT24CXX_ReadOneByte_t, //指定地址读取一个字节 .AT24CXX_WriteOneByte = AT24CXX_WriteOneByte_t,//指定地址写入一个字节 .AT24CXX_WriteLenByte = AT24CXX_WriteLenByte_t, //指定地址开始写入指定长度的数据 .AT24CXX_ReadLenByte = AT24CXX_ReadLenByte_t, //指定地址开始读取指定长度数据 .AT24CXX_Write = AT24CXX_Write_t, //指定地址开始写入指定长度的数据 .AT24CXX_Read = AT24CXX_Read_t, //指定地址开始读取指定长度的数据 .AT24CXX_Init = AT24CXX_Init_t, //初始化IIC .AT24CXX_Check = AT24CXX_Check_t //检查器件 };
			

简单分析:可以看出AT24CXX类中包含了IIC类的成员对象,这是一种包含关系,因为没有属性上的一致性因此谈不上继承。

之所以将IIC的类对象作为AT24CXX类的成员是因为AT24CXX的实现需要调用IIC的成员方法,IIC相当于AT24CXX更下层的驱动,因此采用包含关系更合适。

因此我们在使用AT24CXX的时候只需要实例化AT24CXX类对象就行了,因为IIC包含在AT24CXX类中间,因此不需要实例化IIC类对象,对外提供了较好的封装接口。下面我们看具体的调用方法。

四.主函数main调用测试

在main函数中直接使用AT24C_64来完成所有操作,下面结合代码来看:

#include "at24cxx.h" //为了确定AT24C_64的成员方法和引用操作对象AT24C_64 int main(void) { /************省略其他初始化工作****************/ //第一步:调用对象初始化方法来初始化AT24C64 AT24C_64.AT24CXX_Init(&AT24C_64); //第二步:调用对象检测方法来检测AT24C64  if(AT24C_64.AT24CXX_Check(&AT24C_64) == 0)
  { printf("AT24C64检测成功\r\n");
  } else{ printf("AT24C64检测失败\r\n");
  } return 0;
}
			

可以看出所有的操作都是通过AT24C_64对象调用完成的,在我们初始化好AT24C_64对象之后就可以放心大胆的调用其成员方法,这样封装的好处就是一个设备对外只提供一个对象接口,简洁明了。

五.总结

本文详细介绍了面向对象方法实现IIC驱动封装以及AT24CXX存储器的封装,最终对外仅提供一个操作对象接口,大大提高了代码的复用性以及封装性。

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭