当前位置:首页 > 芯闻号 > 基础知识科普站
[导读]部署先进的网络基础设施不仅可以解决数据传输量激增的问题,而且还能在诸如边缘、核心和云端等网络的不同部分进行数据处理。

部署先进的网络基础设施不仅可以解决数据传输量激增的问题,而且还能在诸如边缘、核心和云端等网络的不同部分进行数据处理。不足为奇的是大部分数据要么是视频,要么是图像,并且这些数据正以指数级速度增长,并将在未来几年内保持持续增长。因此,需要更多的计算资源来应对数据的大量增长(如图1所示)。

由于应用的类型多种多样,因此在数据中心中存在着各种各样的视频或图像处理工作负载。基于专用集成电路(ASIC)的解决方案通常可提供更高的性能,但是无法进行升级以支持未来的算法;基于中央处理器(CPU)的解决方案要比其更加灵活,但其时钟主频已经固定,而且已不再可能大幅提升处理器性能;图形处理器(GPU)是提供视频/图像处理解决方案的另一种候选方案,但其功耗明显高于基于现场可编程逻辑门阵列(FPGA)的解决方案。FPGA在视频处理和压缩领域内,是一种具有吸引力的选择,因为它们提供了实现创新视频处理算法所需的、平衡的资源。此外,FPGA提供了一种灵活的解决方案,可以缩短产品上市时间,并能在解决方案的整个生命周期内实现持续升级和部署新的功能。

FPGA在先进视频处理方面的优异表现

图1:全球互联网视频数据流(来源:思科)

33% CAGR 2017-2022:2017-2022年间的复合年增长率33%

Exabytes per Month:每月的Exabytes数量

基于FPGA的视频解决方案的示例

本白皮书将介绍三种典型的视频应用,以展示基于FPGA的解决方案在广播行业中的优势。这些优势包括缩短处理时间、降低功耗,以及为服务提供商和终端用户节省成本。

本白皮书将介绍基于FPGA的解决方案在以下三种应用中的优势:

视频流

使用视频编辑软件来创作视频内容

人工智能(AI)和深度学习–图像识别是该应用的主要部分,其需要高性能的计算资源

视频流传送

为了使媒体流变得快速和高效,对视频进行转码的需求已急剧增加。目前大多数产品都采用了一种基于软件的方法,但该方法无法满足高带宽、广播级视频流的处理要求。视频流和/或云服务提供商面临着由基于软件的解决方案所带来的低吞吐量、高功耗、长延迟和占用空间大等挑战。根据思科的一份题为《思科可视网络指数:预测与趋势——2017-2022年白皮书》的报告,视频流数据流量正在增加,并且到2022年时将占据整个互联网数据流的82%。在包括视频点播、流媒体直播和视频监控等所有应用中,视频数据流量将逐年稳步增长。

诸如Netflix和YouTube等视频流应用的兴起推动了对视频转码的需求。传统广播和视频流媒体之间最显著的区别在于内容量和频道数。为了支持从电脑到智能手机等各种接收设备,内容必须被转码成不同的分辨率和压缩格式。因此,视频流将消耗大量的计算资源。

FPGA在先进视频处理方面的优异表现

图2:视频转码工作流程

Acquisition:获取

content creator dramatically growing:内容创作者的数量在急剧增加

Editing:编辑

Uploading:上传

Streaming Company:流媒体公司

Cloud Service Provider:云服务提供商

Transcoding:转码

different compression:不同的压缩率

different resolution:不同的分辨率

different bitrates:不同的比特率

Distribution:发布

iPhone:iPhone手机

Andriod:安卓手机

PC Browser:电脑浏览器

流媒体和云服务提供商需要一种解决方案来缓解对计算需求的压力。Achronix Speedster®7t系列FPGA器件中搭载了IBEX这种最先进的视频处理半导体知识产权(IP)能够解决这一重大问题。这种基于FPGA的解决方案可以提供高吞吐量的、低功耗的和占用空间小的系统,而且无需牺牲灵活性。尽管基于ASIC的解决方案功能强大,但只能支持在设计时定义的功能集,而不能支持现场更新。

视频内容创作

在过去,高清分辨率(HD)格式在视频内容创作中占据主导地位。最近,标准分辨率已被提升至4K,甚至到8K,这使得视频编码或解码面临挑战。用于这些较高分辨率的压缩格式主要有Apple ProRes、Avid DNx和SONY XAVC。由于这些压缩格式是专有的,因此ASIC或GPU并不能原生支持这些格式,而且CPU提供的性能也不佳。因此,在较高分辨率下创作视频内容时,FPGA是最佳的解决方案。

FPGA在先进视频处理方面的优异表现

图3:视频编辑工作流程

Import:导入

Editing Software:编辑软件

Import(Decode):导入(解码)

Export(Encode):导出(编码)

Remote Edit:远程编辑

Export:导出

在新的趋势下,远程后期制作的概念正变得越来越普遍。然而,现有的电脑并没有足够的能力来实时处理高分辨率的内容(例如8K)。因此,编辑人员开始借助云基础设施来获得更好的计算性能。此外,由于需要保持社交距离,新冠肺炎疫情也加速了这一趋势。基于云和FPGA的解决方案为编辑人员提供了巨大的好处。Achronix Speedster7t系列FPGA器件进行架构创新,例如二维片上网络(NoC),使其特别适合于加速编码和解码算法。

人工智能与深度学习

人工智能、机器学习和深度学习是众所周知的领域,它们在过去几年中得到了迅速的发展。除了这些领域,图像识别也逐渐成为一个全新的重要领域,这得益于人工智能/机器学习(AI / ML)的创新。例如,先进驾驶员辅助系统(ADAS)使用深度学习算法来处理捕获的图像。安装在车上的行车记录仪使用H.264压缩技术记录视频,然后将视频流转码为诸如JPEG或PNG等合适的图像格式,以用于深度学习图像识别。根据应用场景,可以同时完成丢帧、更改分辨率或其他图像处理任务。

在零售业的安全摄像头或物流业的包裹分拣中也有类似的应用案例,其数据流与上述示例相同 —— 这些应用中的摄像头使用H.264或H.265等压缩比相对较高的压缩格式记录视频,然后将编码的视频流传输到云端或数据中心。在云端,视频流由原始格式转码为适合深度学习的格式,将视频文件转换为图像资料库。

FPGA在先进视频处理方面的优异表现

图4:典型的深度学习图像数据流

Transcoding:转码

Different compression:不同的压缩率

Video=Image:视频=图像

AI:人工智能

Deep Learning:深度学习

Image Recognition:图像识别

从历史来看,FPGA一直擅长将电影转码为图像。此外,使用FPGA中的深度学习算法对图像预先进行预处理,不仅可以提高吞吐量,而且还能减少系统级的数据事务量。Achronix Speedster7t的创新架构及其带有的专用机器学习处理器(MLP),使之成为实现定制的和既定的深度学习算法的理想选择。

FPGA代表性视频用例的性能

我们分别使用FPGA和CPU来实现上述三个典型应用案例,并对一些关键指标进行对比,如下表所示。

FPGA在先进视频处理方面的优异表现

表注

↑ FPGA提供更佳的性能。

↔ FPGA和CPU提供同等的性能,但FPGA是卸载CPU负担的首选解决方案。

↓ FPGA和CPU提供同等的性能,但CPU是首选解决方案。

视频流传输

在视频流传输应用中,常用的压缩格式是H.264或H.265,因为终端(接收端)设备原生支持这些格式。诸如位深或色度和分辨率等参数通常为8位、4:2:0和1920×1080或1280×720。在解码器方面,基于FPGA的实现比基于CPU的系统提供更高的吞吐量。在数据层面,FPGA效率更高,因为如果将CPU用于纯数据处理之外的其他任何与数据相关的任务时,它通常都没有得到充分的利用。然而在编码器方面,硬化的CPU编码器内核是专门针对这些典型参数而设计的,并提供了足够的性能。

为了获得两全其美的效果,将FPGA和CPU解决方案相结合,并由FPGA来处理繁重的工作负载是理想的解决方案。FPGA上的高效功能可以被移植到可重新配置的硬件上去运行。例如,运动估计算法是一种适合FPGA的工作负载。另一方面,CPU更适合处理比特率控制算法。

一些服务提供商要求在软件解决方案中实现与x264相同的视频质量和流媒体格式。FPGA和CPU的组合解决方案可以有效地满足这些要求。使用这种方法,每种功能都被合理地分配,较繁重的处理负载被转移到FPGA,与纯软件解决方案相比,这种方法能提供类似或更好的视频质量和流媒体格式,而且编码时间显著减少。

下表列出了使用这种方法的x264评测结果,第一行显示了在FPGA上的运动估计函数(x264_8_me_search_erf)的结果。运动估计是CPU最繁重的工作负载之一,占据总处理时间的21.2278%。

视频内容创作

用于内容创作的视频编辑软件支持多种压缩格式,其中包括Apple ProRes、Avid DNx、Sony XAVC和Panasonic AVC-Intra,这些格式都带有基于内帧结构的专有压缩方案。此外,还有一些支持RAW模式的格式,诸如Apple ProRes RAW、RED RAW、ARRI RAW和Blackmagic RAW,这些格式都得到了摄像机制造商的支持。由于这些格式(以及新型的和不断出现的格式)具有不断变化的特性,因此基于ASIC的解决方案并不实用,而需要基于FPGA的解决方案。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭