CMOS有哪些优势?CMOS使用注意事项介绍
扫描二维码
随时随地手机看文章
CMOS作为常用模块,被很多人所熟知。同样,在往期文章中,小编对CMOS也有过诸多介绍。如果大家想了解CMOS,可以搜索关键词哦。为增进大家对CMOS的认识,本文将对CMOS的优势以及两点CMOS使用注意事项予以介绍。对CMOS充满好奇的你,不妨跟小编继续往下阅读哦。
一、CMOS优势
最新CMOS传感器获得广泛应用的一个前提是其所拥有的较高灵敏度、较短曝光时间和日渐缩小的像素尺寸。像素灵敏度的一个衡量尺度是填充因子(感光面积与整个像素面积之比)与量子效率(由轰击屏幕的光子所生成的电子的数量)的乘积。CCD传感器因其技术的固有特性而拥有一个很大的填充因子。而在CMOS图像传感器中,为了实现堪与CCD转换器相媲美的噪声指标和灵敏度水平,人们给CMOS图像传感器装配上了有源像素传感器(APS),并且导致填充因子降低,原因是像素表面相当大的一部分面积被放大器晶体管所占用,留给光电二极管的可用空间较小。所以,当今CMOS传感器的一个重要的开发目标就是扩大填充因子。赛普拉斯(FillFactory)通过其获得专利授权的一项技术,可以大幅度地提高填充因子,这种技术可以把一颗标准CMOS硅芯片最大的一部分面积变为一块感光区域。
另外,对于一个典型的工业用图象传感器而言,由于许多场景的拍摄都是在照明条件很差的情况下进行的,因此拥有较大的动态范围将是十分有益的。CMOS图像传感器通过多斜率操作实现了这一目标:转换曲线由倾度不同的直线部分所组成,它们共同形成了一个非线性特征曲线。因此,一幅场景的黑暗部分有可能占据集成模拟-数字转换器转换范围的很大一部分:转换特征曲线在这里最为陡峭,以实现高灵敏度和对比度。特征曲线上半部分的平整化将在图像的明亮部分捕获几个数量级的过度曝光,并以一个更加细致的标度来表现它们。采用多斜率的方式来运作LUPA-4000将使高达90dB的光动态范围与一个10位A/D转换范围相匹配。
二、CMOS使用过程中需要注意的两点问题
(一)CMOS的接口电路问题
(1)CMOS电路与运放连接。当和运放连接时,若运放采用双电源,CMOS采用的是独立的另一组电源。若运放使用单电源,且与CMOS使用的电源一样,则可直接相连。
(2)CMOS与TTL等其它电路的连接。在电路中常遇到TTL电路和CMOS电路混合使用的情况,由于这些电路相互之间的电源电压和输入、输出电平及负载能力等参数不同,因此他们之间的连接必须通过电平转换或电流转换电路,使前级器件的输出的逻辑电平满足后级器件对输入电平的要求,并不得对器件造成损坏。逻辑器件的接口电路主要应注意电平匹配和输出能力两个问题,并与器件的电源电压结合起来考虑。下面分两种情况来说明:
(A)TTL到CMOS的连接。用TTL电路去驱动CMOS电路时,由于CMOS电路是电压驱动器件,所需电流小,因此电流驱动能力不会有问题,主要是电压驱动能力问题,TTL电路输出高电平的最小值为2.4V,而CMOS电路的输入高电平一般高于3.5V,这就使二者的逻辑电平不能兼容。为此可在TTL的输出端与电源之间接一个电阻R(上拉电阻)可将TTL的电平提高到3.5V以上。
(B)CMOS到TTL的连接。CMOS电路输出逻辑电平与TTL电路的输入电平可以兼容,但CMOS电路的驱动电流较小,不能够直接驱动TTL电路。为此可采用CMOS/TTL专用接口电路,如CMOS缓冲器CC4049等,经缓冲器之后的高电平输出电流能满足TTL电路的要求,低电平输出电流可达4mA。实现CMOS电路与TTL电路的连接。需说明的时,CMOS与TTL电路的接口电路形式多种多样,实用中应根据具体情况进行选择。
(二)输出端的保护问题
(1)MOS器件输出端既不允许和电源短接,也不允许和地短接,否则输出级的MOS管就会因过流而损坏。
(2)在CMOS电路中除了三端输出器件外,不允许两个器件输出端并接,因为不同的器件参数不一致,有可能导致NMOS和PMOS器件同时导通,形成大电流。但为了增加电路的驱动能力,允许把同一芯片上的同类电路并联使用。
(3)当CMOS电路输出端有较大的容性负载时,流过输出管的冲击电流较大,易造成电路失效。为此,必须在输出端与负载电容间串联一限流电阻,将瞬态冲击电流限制在10mA以下。
以上便是此次小编带来的“CMOS”相关内容,通过本文,希望大家对CMOS优势和CMOS的两点使用注意事项具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!