你了解MCU的工作原理吗?8位MCU运算速度够用吗?
扫描二维码
随时随地手机看文章
MCU也就是微控制单元,对于MCU,工业的朋友相对更为熟悉。但是,在生活中,对于MCU,我们或多或少也有所耳闻。为增进大家对MCU的认识,本文将对MCU的工作原理、8位MCU的运算速度和存储予以介绍。如果你对MCU具有兴趣,不妨继续往下阅读哦。
一、MCU工作原理
MCU同温度传感器之间通过I2C总线连接。I2C总线占用2条MCU输入输出口线,二者之间的通信完全依靠软件完成。温度传感器的地址可以通过2根地址引脚设定,这使得一根I2C总线上可以同时连接8个这样的传感器。本方案中,传感器的7位地址已经设定为1001000。MCU需要访问传感器时,先要发出一个8位的寄存器指针,然后再发出传感器的地址(7位地址,低位是WR信号)。传感器中有3个寄存器可供MCU使用,8位寄存器指针就是用来确定MCU究竟要使用哪个寄存器的。本方案中,主程序会不断更新传感器的配置寄存器,这会使传感器工作于单步模式,每更新一次就会测量一次温度。
要读取传感器测量值寄存器的内容,MCU必须首先发送传感器地址和寄存器指针。MCU发出一个启动信号,接着发出传感器地址,然后将RD/WR管脚设为高电平,就可以读取测量值寄存器。
为了读出传感器测量值寄存器中的16位数据,MCU必须与传感器进行两次8位数据通信。当传感器上电工作时,默认的测量精度为9位,分辨力为0.5 C/LSB(量程为-128.5 C至128.5 C)。本方案采用默认测量精度,根据需要,可以重新设置传感器,将测量精度提高到12位。如果只要求作一般的温度指示,比如自动调温器,那么分辨力达到1 C就可以满足要求了。这种情况下,传感器的低8位数据可以忽略,只用高8位数据就可以达到分辨力1 C的设计要求。由于读取寄存器时是按先高8位后低8位的顺序,所以低8位数据既可以读,也可以不读。只读取高8位数据的好处有二,第一是可以缩短MCU和传感器的工作时间,降低功耗;第二是不影响分辨力指标。
MCU读取传感器的测量值后,接下来就要进行换算并将结果显示在LCD上。整个处理过程包括:判断显示结果的正负号,进行二进制码到BCD码的转换,将数据传到LCD的相关寄存器中。
数据处理完毕并显示结果之后,MCU会向传感器发出一个单步指令。单步指令会让传感器启动一次温度测试,然后自动进入等待模式,直到模数转换完毕。MCU发出单步指令后,就进入LPM3模式,这时MCU系统时钟继续工作,产生定时中断唤醒CPU。定时的长短可以通过编程调整,以便适应具体应用的需要。
二、8位MCU运算速度和存储
在了解了MCU的工作原理后,我们再来看看8位MCU的运算速度以及存储情况,看看8位MCU和32位MCU有何区别。
与8位MCU相比,32位MCU的主要优势之一是其更出色的处理速度。典型的8位MCU通常以8 MHz运行,而32位MCU的时脉频率则可达数百MHz。如果只是使用MCU来开启机械继电器,就很可能会忽略到这些数据处理时的速度差异。但是,当运行的是需要大量数据处理的应用程序时,这些速度上的差异就会变得明显。例如,每天要处理上千次工作的门禁控制器,就需要采用32位的MCU。
8位MCU的优势在于价格便宜且易于使用。事实上,在许多应用中,它们已经被使用了40年之久,却仍然非常受欢迎。但是,如果所欲处理的是需要大量内部随机存取存储(RAM)的工作,那么可能就必须采用32位MCU来替换8位。32位MCU的RAM通常比8位产品多8倍。因此,例如工程师需要一个巨大的缓冲区来储存音讯数据的话,那么32位MCU便是最好的应用选择。
以上便是此次小编带来的“MCU”相关内容,通过本文,希望大家对MCU的工作原理以及8位MCU的运算速度和存储具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!