静电源头的控制对付静电最好的办法,就是不让它产生。至少不能让它积累到产生破坏的程度。比较常用的是离子风机,它能源源不断地产生出正负离子,并吹送到需要消除静电的地方。另外在产品的生产和运输中,使用防静电工作台,专用的防静电包装等也能防止静电的积聚。切断静电传导通道当我们改变不了世界的时候,至少能改变我们自己。对于静电也是这样,大多数情况下我们能做的,是不让静电进入设备,加强设备的抗静电能力。不用花什么成本,但很有效的方法,是增大设备内部敏感电路板到外壳的距离。这里我们经常会忽视的是固定电路板的螺钉,这些螺钉一般都是金属的,直接拧到外壳。这样的情况下,虽然电路板离外壳挺远,但静电还是能沿着螺钉轻易的爬进电路板,功亏一篑。所以记得螺钉要和内部电路保持距离。屏蔽,是阻止静电进入设备最为有效的方法。由于静电释放的一瞬间,会产生强烈的电磁场辐射,所以我们还需要对电磁场辐射进行屏蔽。对于频率低的磁场,主要是用高导磁率的材料做壳体,使磁场被引导,集中从壳体经过。对于高频的磁场,要用导电性能良好的金属,其原理是磁场在导体中会激发出涡流,此涡流产生反向的磁场,与源磁场互相抵消,从而达到对内部区域的屏蔽。如果需要同时对电场,高频和低频磁场做屏蔽,壳体需要选取复合屏蔽材料。屏蔽金属壳最好要接地,这样电荷可以泄放到大地,而且不但能屏蔽外部的电场和磁场,也能屏蔽内部的电磁辐射对外部的干扰。静电释放Electro-Static Discharge (ESD)对于设备外部的静电,我们要把它堵在外面,在入口的地方用TVS(Transient Voltage Suppressor)管,把静电泄放到机壳上。另一方面,对于已经进入设备的静电,要把它缓慢释放掉,缓慢释放掉,缓慢释放掉,重要的事情要说三遍。对于电路板设计,下面是比较常用的处理方式:电路板最外侧是一圈保护地,通常用螺丝固定到金属外壳,外壳再通过低电阻的导线连接至大地。这样外部的静电直接被泄放到大地,不会对内部电路板上的器件产生任何伤害。内部的信号地,就是我们电路信号的参考地,通过1M欧姆电阻连接至保护地,它可以把电路板信号地上积累的静电缓慢释放掉,电路板上的其它电路可以先把静电释放到信号地。1nF的电容,对信号地到保护地提供一个高频的通路,电路板上通过高频辐射感应产生的能量,可以通过它释放到地。看到这里我们可能会有两个疑问:为什么保护地要留个缺口呢?我们为什么不把信号地直接和保护地连起来呢?这样不是静电更容易泄放到大地吗?第一个问题,如果把缺口连上,保护地就会成为一个环形的回路,如果有电磁场以垂直电路板的方向通过,则会在此回路中感应出电流,对电路板来说就是强干扰。对于通过空间传播的电磁辐射干扰来说,最怕的就是电路板上存在电流可以流动的回路。如果我们留心,可以看到电路板上的保护地,如晶振周围的保护地(Guard Ring),也不是封闭起来的一圈,而是会留出缺口。第二个问题,对于一些设备,如果有良好导电的金属外壳,外部没有长导线,信号地直接接机壳也是可以的。比如我们家里的电脑,主板上的地线就是直接连到机壳的。对于有长导线暴露在外,易于和大地之间形成放电通路的,就要考虑在引线接口处,用隔离阻断放电通路,或者用静电保护器件把静电导入大地。需要注意连接至敏感器件的导线,如果此导线走线比较长,而且靠近静电放电的通路,很容易被电磁辐射干扰。应尽量远离干扰源,避免与放电通路平行走线,在导线串接小电阻,或者磁珠等,可以抑制干扰进入敏感器件。最后想说,最重要的是实践。我们设计一个产品时,首先要看国家标准,或国际标准的要求。还有就是不要迷信权威和教条,遇到关于ESD的疑惑时,我们不妨回到起点,就是这个设计,会不会导致大量电荷瞬间释放的情况。以上是我们对静电保护的一些粗浅见解,你有不同的看法吗?留言文章末尾留言。参考资料:《EMC 电磁兼容 设计与测试案例分析》郑军奇《电子设备防干扰原理与技术》周旭PCB Design Guidelines that Maximize the Performance of TVS Diodes,Littelfuse—— The End ——扫码添加管理员微信,加入技术交流群