干货 | 串口自动波特率识别程序设计
扫描二维码
随时随地手机看文章
- 程序主页:https://github.com/JayHeng/cortex-m-apps/tree/master/components/autobaud
一、串口(UART)自动波特率识别程序设计
1.1 函数接口定义
首先是设计自动波特率识别程序头文件:autobaud.h ,这个头文件里直接定义如下 3 个接口函数原型。涵盖必备的初始化流程 init()、deinit(),以及最核心的波特率识别功能 get_rate()。//! @brief 初始化波特率识别
void autobaud_init(void);
//! @brief 检测波特率识别是否已完成,并获取波特率值
bool autobaud_get_rate(uint32_t *rate);
//! @brief 关闭波特率识别
void autobaud_deinit(void);
1.2 识别设计思想
关于识别,因为上位机数据是从 RXD 引脚过来的,所以在 MCU 里需要先将 RXD 引脚配置成普通数字输入 GPIO(这个引脚需要上拉,默认保持高电平),然后检测这个 GPIO 的电平跳变(一般用下降沿)并计时。下图是典型的 UART 单字节传输时序,I/O 空闲状态是高电平,传输时总是由 1bit 低电平起始位开启,然后是从 LSB 到 MSB 的 8bit 数据位,校验位是可选项(我们暂不开启),最后由 1bit 高电平停止位结束,I/O 回归高电平空闲状态。虽然我们不需要约定上位机波特率,但是要想实现波特率自动识别,上位机初始传输的数据却必须要事先约定好(可理解为接头暗号),这涉及到 MCU 里检测电平跳变次数与相应计时计算。MCU识别完成后将暗号发回给上位机确认。痞子衡设计的接头暗号是 0x5A, 0xA6 两个字节,两字节暗号相比单字节暗号容错性更好一些(以防 I/O 上有干扰,导致误识别),根据指定的暗号和 UART 传输时序图,我们很容易得到如下常量定义:
- Note 1:检测下降沿跳变,是因为 I/O 空闲为高,起始位的存在保证了每 Byte 传输周期总是从下降沿开始。
- Note 2:起始位和停止位两个 bit 的存在还兼有波特率容错的功能,通信双方波特率在 3% 的误差内数据传输均可以正常进行。
enum _autobaud_counts
{
//! 0x5A 字节对应的下降沿个数
kFirstByteRequiredFallingEdges = 4,
//! 0xA6 字节对应的下降沿个数
kSecondByteRequiredFallingEdges = 3,
//! 0x5A 字节(从起始位到停止位)第一个下降沿到最后一个下降沿之间的实际bit数
kNumberOfBitsForFirstByteMeasured = 8,
//! 0xA6 字节(从起始位到停止位)第一个下降沿到最后一个下降沿之间的实际bit数
kNumberOfBitsForSecondByteMeasured = 7,
//! 两个下降沿之间允许的最大超时(us)
kMaximumTimeBetweenFallingEdges = 80000,
//! 对实际检测出的波特率值做对齐处理,以便于更好地配置UART模块
kAutobaudStepSize = 1200
};
上述常量定义里,kMaximumTimeBetweenFallingEdges 指定了两个下降沿之间允许的最大时间间隔,超过这个时间,自动波特率程序将丢掉前面统计的下降沿个数,重头开始识别,这个设计也是为了防止 I/O 上有电平干扰,导致误识别。kAutobaudStepSize 常量是为了对检测出的波特率值做对齐处理,公式是 rounded = stepSize * (value/stepSize 0.5),其中 value 是实际检测出的波特率值,rounded 是对齐后的波特率值,用对齐后的波特率值能更好地配置UART外设(这跟UART模块里波特率发生器SBR设计有关)。最后就是 I/O 电平下降沿检测方法设计,这里既可以用软件查询(就是循环读取 I/O 输入电平,比较当前值与上一次值的差异),也可以使用GPIO模块自带的边沿中断功能。推荐使用后者,一方面计时更精确,另外也不用阻塞系统。检测到下降沿发生就调用一次如下 pin_transition_callback() 函数,在这个函数里统计跳变次数以及计时。//! @brief 管脚下降沿跳变回调函数
static void pin_transition_callback(void);
1.3 主代码实现
根据上一小节描述的设计思想,我们很容易写出下面的主代码(autobaud_irq.c),代码里痞子衡都做了详细注释。有一点要提的是关于其中系统计时,可参考痞子衡旧文 《嵌入式里通用微秒(microseconds)计时函数框架设计与实现》 。//! @brief 使能GPIO管脚中断
extern void enable_autobaud_pin_irq(pin_irq_callback_t func);
//! @brief 关闭GPIO管脚中断
extern void disable_autobaud_pin_irq(void);
//!< 已检测到的下降沿个数
static uint32_t s_transitionCount;
//!< 0x5A 字节检测期间内对应计数值
static uint64_t s_firstByteTotalTicks;
//!< 0xA6 字节检测期间内对应计数值
static uint64_t s_secondByteTotalTicks;
//!< 上一次下降沿发生时系统计数值
static uint64_t s_lastToggleTicks;
//!< 下降沿之间最大超时对应计数值
static uint64_t s_ticksBetweenFailure;
void autobaud_init(void)
{
s_transitionCount = 0;
s_firstByteTotalTicks = 0;
s_secondByteTotalTicks = 0;
s_lastToggleTicks = 0;
// 计算出下降沿之间最大超时对应计数值
s_ticksBetweenFailure = microseconds_convert_to_ticks(kMaximumTimeBetweenFallingEdges);
// 使能GPIO管脚中断,并注册中断处理回调函数
enable_autobaud_pin_irq(pin_transition_callback);
}
void autobaud_deinit(void)
{
// 关闭GPIO管脚中断
disable_autobaud_pin_irq();
}
bool autobaud_get_rate(uint32_t *rate)
{
if (s_transitionCount == (kFirstByteRequiredFallingEdges kSecondByteRequiredFallingEdges))
{
// 计算出实际检测到的波特率值
uint32_t calculatedBaud =
(microseconds_get_clock() * (kNumberOfBitsForFirstByteMeasured kNumberOfBitsForSecondByteMeasured)) /
(uint32_t)(s_firstByteTotalTicks s_secondByteTotalTicks);
// 对实际检测出的波特率值做对齐处理
// 公式:rounded = stepSize * (value/stepSize .5)
*rate = ((((calculatedBaud * 10) / kAutobaudStepSize) 5) / 10) * kAutobaudStepSize;
return true;
}
else
{
return false;
}
}
void pin_transition_callback(void)
{
// 获取当前系统计数值
uint64_t ticks = microseconds_get_ticks();
// 计数这次检测到的下降沿
s_transitionCount ;
// 如果本次下降沿与上次下降沿之间间隔过长,则从头开始检测
uint64_t delta = ticks - s_lastToggleTicks;
if (delta > s_ticksBetweenFailure)
{
s_transitionCount = 1;
}
switch (s_transitionCount)
{
case 1:
// 0x5A 字节检测时间起点
s_firstByteTotalTicks = ticks;
break;
case kFirstByteRequiredFallingEdges:
// 得到 0x5A 字节检测期间内对应计数值
s_firstByteTotalTicks = ticks - s_firstByteTotalTicks;
break;
case (kFirstByteRequiredFallingEdges 1):
// 0xA6 字节检测时间起点
s_secondByteTotalTicks = ticks;
break;
case (kFirstByteRequiredFallingEdges kSecondByteRequiredFallingEdges):
// 得到 0xA6 字节检测期间内对应计数值
s_secondByteTotalTicks = ticks - s_secondByteTotalTicks;
// 关闭GPIO管脚中断
disable_autobaud_pin_irq();
break;
}
// 记录本次下降沿发生时系统计数值
s_lastToggleTicks = ticks;
}
二、串口(UART)自动波特率识别程序实现
前面讲的都是硬件无关设计,但最终还是要落实到具体 MCU 平台上的,其中 GPIO 中断部分是跟 MCU 紧相关的。我们以恩智浦 i.MXRT1011 为例来介绍硬件实现。2.1 管脚中断方式实现(基于i.MXRT1011)
恩智浦 MIMXRT1010-EVK 有板载调试器 DAPLink,这个 DAPLink 中也集成了 USB 转串口的功能,对应的 UART 引脚是 IOMUXC_GPIO_09_LPUART1_RXD 和 IOMUXC_GPIO_10_LPUART1_TXD,我们就选用这个管脚 GPIO1[9] 做自动波特率检测,实现代码如下:
- BSP程序:https://github.com/JayHeng/cortex-m-apps/tree/master/apps/autobaud_imxrt1011/bsp/src/pinmux_utility.c
typedef void (*pin_irq_callback_t)(void);
static pin_irq_callback_t s_pin_irq_func;
//! @brief UART引脚功能切换函数
void uart_pinmux_config(bool setGpio)
{
if (setGpio)
{
IOMUXC_SetUartAutoBaudPinMode(IOMUXC_GPIO_09_GPIOMUX_IO09, GPIO1, 9);
}
else
{
IOMUXC_SetUartPinMode(IOMUXC_GPIO_09_LPUART1_RXD);
IOMUXC_SetUartPinMode(IOMUXC_GPIO_10_LPUART1_TXD);
}
}
//! @brief 使能GPIO管脚中断
void enable_autobaud_pin_irq(pin_irq_callback_t func)
{
s_pin_irq_func = func;
// 开启GPIO1_9下降沿中断
GPIO_SetPinInterruptConfig(GPIO1, 9, kGPIO_IntFallingEdge);
GPIO1->IMR |= (1U << 9);
NVIC_SetPriority(GPIO1_Combined_0_15_IRQn, 1);
NVIC_EnableIRQ(GPIO1_Combined_0_15_IRQn);
}
//! @brief GPIO中断处理函数
void GPIO1_Combined_0_15_IRQHandler(void)
{
uint32_t interrupt_flag = (1U << 9);
// 仅当GPIO1_9中断发生时
if ((GPIO_GetPinsInterruptFlags(GPIO1)