当前位置:首页 > 公众号精选 > 可靠性杂坛
[导读]本文来源面包板社区什么是共模与差模电器设备的电源线,电话等的通信线,与其它设备或外围设备相互交换的通讯线路,至少有两根导线,这两根导线作为往返线路输送电力或信号,在这两根导线之外通常还有第三导体,这就是"地线"。电压和电流的变化通过导线传输时有两种形态,一种是两根导线分别做为往返...

本文来源面包板社区


什么是共模与差模


电器设备的电源线,电话等的通信线, 与其它设备或外围设备相互交换的通讯线路,至少有两根导线,这两根导线作为往返线路输送电力或信号,在这两根导线之外通常还有第三导体,这就是"地线"。电压和电流的变化通过导线传输时有两种形态, 一种是两根导线分别做为往返线路传输, 我们称之为"差模";另一种是两根导线做去路,地线做返回传输, 我们称之为"共模"。



如上图, 蓝色信号是在两根导线内部作往返传输的,我们称之为"差模";而黄信号是在信号与地线之间传输的,我们称之为"共模"。



共模干扰与差模干扰


任何两根电源线或通信线上所存在的干扰,均可用共模干扰和差模干扰来表示:共模干扰在导线与地(机壳)之间传输,属于非对称性干扰,它定义为任何载流导体与参考地之间的不希望有的电位差;差模干扰在两导线之间传输,属于对称性干扰,它定义为任何两个载流导体之间的不希望有的电位差。在一般情况下,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。差模干扰幅度小、频率低、所造成的干扰较小。



共模干扰信号

      

共模干扰的电流大小不一定相等,但是方向(相位)相同的。电气设备对外的干扰多以共模干扰为主,外来的干扰也多以共模干扰为主,共模干扰本身一般不会对设备产生危害,但是如果共模干扰转变为差模干扰,干扰就严重了,因为有用信号都是差模信号。



差模干扰信号


差模干扰的电流大小相等,方向(相位)相反。由于走线的分布电容、电感、信号走线阻抗不连续,以及信号回流路径流过了意料之外的通路等,差模电流会转换成共模电流。


共模干扰产生原因

1. 电网串入共模干扰电压。

2. 辐射干扰(如雷电,设备电弧,附近电台,大功率辐射源)在信号线上感应出共模干扰,原因是交变的磁场产生交变   的电流,地线-零线回路面积与地线-火线回路面积不相同,两个回路阻抗不同等原因造成电流大小不同。

3.接地电压不一样,简单的说就电位差而造就了共模干扰。

4.设备内部的线路对电源线造成的共模干扰。


共模干扰电流

共模干扰一般是以共模干扰电流存在的形式出现的,一般情况下共模干扰电流产生的原因有三个方面:

1. 外界电磁场在电路走线中的所有导线上感应出来电压(这个电压相对于大地是等幅和同相的),由这个电压产生的电流。

 2. 由于电路走线两端的器件所接的地电位不同,在这个地电位差的驱动下产生的电流。

 3. 器件上的电路走线与大地之间有电位差,这样电路走线上会产生共模干扰电流。

器件如果在其电路走线上产生共模干扰电流,则电路走线会产生强烈的电磁辐射,对电子、电气产品元器件产生电磁干扰,影响产品的性能指标;另外,当电路不平衡时,共模干扰电流会转变为差模干扰电流,差模干扰电流对电路直接产生干扰影响。对于电子、电气产品电路中的信号线及其回路而言:差模干扰电流流过电路中的导线环路时,将引起差模干扰辐射,这种环路相当于小环天线,能向空间辐射磁场,或接收磁场。


如何识别共模干扰

1. 从干扰源判断:雷电、附近发生的电弧、附近的电台或其它大功率辐射装置在电缆上产生的干扰为共模干扰。

2. 从频率上判断:共模干扰主要集中在1MHz以上。这是由于共模干扰是通过空间感应到电缆上的,这种感应只有在较高频率时才容易发生。但有一种例外,当电缆从很强的磁场辐射源(例如,开关电源)旁边通过时,也会感应到频率较低的共模干扰。

3. 用仪器测量:只要有一台频谱分析仪和一只电流卡钳就可以进行测量、判断了,判断的步骤如下:

        a. 将电流卡钳分别卡在信号线或地线(火线或零线)上,记录下某个感应频率(f1)的干扰强度。

        b.将电流卡钳同时卡住信号线和地线, 若能观察到(f1)处的干扰,则(f1)干扰中包含共模干扰成份,要判断是否仅含共模 干扰成份,进行步骤c的判别。

        c.将卡钳分别卡住信号线和地线,若两根线上测得的(f1)干扰的幅度相同,则(f1)干扰中仅含共模干扰成份;若不相同,则(f1)干扰中还包含差模干扰成份。


如何抑制共模干扰

共模干扰作为EMC干扰中最为常见且危害较大的干扰,我们抑制它最直接的方法就是滤波,这是抑制和防止共模干扰的一项重要措施。滤波器的功能就是允许某一特定频率的信号顺利通过,而其它频率的信号则要受到较大的抑制,它实质上是一个选频电路,它切断了电磁干扰沿信号线或电源线传播的路径,另外它还是压缩干扰频谱的一种有效方法,当干扰频谱不同于有用信号的频带时,可以用滤波器将无用的干扰信号滤除。因此,恰当地选择和正确地使用滤波器对抑制共模干扰是十分重要的。


如果有用信号是差模信号而干扰信号是共模信号,可使用共模电感来抑制干扰信号:



共模电感的原理和抑制干扰


在电路中串入共模电感,当有共模干扰电流流经线圈时,由于共模干扰电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模干扰电流,达到滤波的目的;当电路中的正常差模电流流经共模电感时,电流在同相绕制的共模电感线圈中产生反向的磁场而相互抵消,因而对正常的差模电流基本没有衰减作用。


案例  USB 信号上的共模干扰抑制方法

USB 端口的滤波处理-使用共模电感


USB 传输线上的信号是差分信号而干扰源是共模干扰信号,在传输线上串上共模电感能较好的抑制共模干扰,而对有用的差分信号没有任何衰减。

USB 高速运行会在DM/DP信号线上产生很强的共模干扰


电路中加入滤波器-共模电感后共模干扰信号得到有效抑制


如果共模干扰源是在电源回路,可使用共模电容来抑制干扰信号

在电路中引入共模电容,则共模电容提供最短的路径使共模干扰信号被旁路,从而抑制共模干扰的产生 。


如果电源回路同时还存在差模干扰,使用差模电容来抑制干扰

在电路中引入差模电容,则差模电容提供最短的路径使差模干扰信号被旁路,从而抑制差模干扰的产生 。


总结

共模干扰作为EMC干扰中最为常见且危害很大的干扰,抑制它的方法除了滤波外,还可以通过对信号线路进行屏蔽,在PCB 板上大面积铺地降低地线阻抗来减少共模信号强度等方法。






申请开发板




更多精彩干货,点击下方关注查看



  • 33个单片机I/O接口电路

  • 开关电源八大处损耗,讲的太详细了!

  • Y电容容量为什么不能太大?

  • TVS二极管失效分析

  • 小小蜂鸣器,驱动电路可大有学问

  • AD常用快捷键总结,超级实用


点击阅读原文,下载EMC(电磁兼容)设计与测试案例分析》




长按二维码识别关注我们

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭