当前位置:首页 > 公众号精选 > Linux阅码场
[导读]Linux5.14于14小时之前发布了,而我5.13的总结还没有写出,我早觉得有写一点东西的必要了,这虽然于搬砖的码农毫不相干,但在追求进步的工程师那里,却大抵只能如此而已。为了不忘却的纪念,我们列出5.13内核的数个激动人心的新特性:AppleM1的初始MisccgroupLa...

Linux 5.14于14小时之前发布了,而我5.13的总结还没有写出,我早觉得有写一点东西的必要了,这虽然于搬砖的码农毫不相干,但在追求进步的工程师那里,却大抵只能如此而已。为了不忘却的纪念,我们列出5.13内核个激动人心的新特性:

  1. Apple M1的初始

  2. Misc cgroup

  3. Landlock安全模块

  4. 系统调用的堆栈随机化

  5. printk无锁ringbuffer的进一步优化

  6. BPF可调用内核函数

  7. 公共的IO PAGE Fault支持


Apple M1的初始支持


5.13最爆炸性的新闻无非是初始的Apple M1支持,但是然并卵,实用性几乎为0。因为,已经合入的patch非常类似于SoC bringup的初级阶段:

  • 带earlycon支持的UART (samsung-style) 串口驱动

  • Apple中断控制器,支持中断、中断亲和(affinity )和IPI (跨CPU中断)

  • SMP (通过标准spin-table来支持)

  • 基于simplefb的framebuffer驱动

  • Mac Mini的设备树

这样一个东西,是没法用的,发烧友玩玩可以,但是我们感激并欣赏Hector Martin “marcan”领导的Asahi Linux项目开了一个这样的好头。但是,在Apple M1上面跑Ubuntu啥的,近期、中期和长期的选择还是用Parallels虚拟化技术比较好。


Misc cgroup

众所周知,cgroup具备一个强大的控制CPU、内存、I/O等资源在不同的任务群间进行分配的能力。比如,你通过下面的命令,限制A这个群的CFS调度类进程,最多只能耗费20%CPU

这个世界上的绝大多数资源都是可以进行抽象的,比如属于cpuacctcpumemoryblkionet_cls什么的,但是,总有一些不同于常人的人,他们既不是男人,也不是女人,而是“妖如果有了仁慈的心”的人。Linux内核的驱动子系统多达100多个,但是还是有极个别驱动不属于这100多类中的任何一类,于是在drivers下面有个misc

现在内核碰到了类似的问题,它的资源要进行配额控制,但是不属于通用的类型,而是:

  • Secure Encrypted Virtualization (SEV) ASIDs

  • SEV - Encrypted State (SEV-ES) ASIDs

这些有限的 ASIDs用于在AMD平台上,进行虚拟机内存加密,不能归于现有cgroup的任何一类。那么,咱们加个misc类的cgroup吧,于是Misc control-group controller5.13内核诞生了。这再次证明了,不要重新造轮子,但是你可以在现有的轮子里面放一个“杂交”轮子。Misc cgroup允许进行一些特殊资源的控制,透过3个接口完成。

  • misc.capacity描述资源的能力(只读),比如:

$ cat misc.capacityres_a 50res_b 10
  • 透过misc.current描述当前资源的占用(只读),比如:

$ cat misc.currentres_a 3res_b 0
  • 透过misc.max设置这个cgroup最多只能使用多少资源(可读可写),比如:

# echo res_a 1 > misc.max同志们,有了这个misc cgroup的支持,以后咱们的阿猫阿狗资源限制,也可以往里面塞了。它相当于开了一道门。

 

Landlock安全模块

曾经有一个真诚的patch摆在我面前,但是我没有珍惜,发了V1被人怼了后就放弃了,等到失去的时候才后悔莫及,尘世间最痛苦的事莫过于此,如果上天可以给我一个机会再来一次的话,我会对那个patch说我要继续迭代发!如果非要在这个迭代的次数上加上一个期限,我希望是一百遍。5.13内核,最励志的事情无疑是,"Landlock" Lands In Linux 5.13 !在迭代了超过5年之后,安全组件landlock终于合入了Linux内核,这份始于2016年的爱情,终于有了一个美好的结局。为此,Linux内核doc的维护者,LDD3的作者之一Jonathan Corbet发文指出:Kernel development is not for people who lack persistence; changes can take a number of revisions and a lot of time to make it into a mainline release。文章链接:

https://lwn.net/Articles/859908/

所以,没有耐力、不能持之以恒,想一夜暴富的人,真地不适合做kernel开发。Landlock LSM主要给非特权进程提供安全沙盒的能力,比如你可以对一个普通进程,施加自定义的文件系统访问控制策略。

它的操作原理是,先创建一个规则集ruleset,比如,如下的ruleset就是涉及到文件的读、写、执、读DIR、写DIR等:

ruleset对用户以文件描述符fd的形式存在,再次证明了“一切都是文件”。接下来,我们可以透过这个fd,向这个ruleset里面添加rule,比如我们添加一个/usr目录的“读”规则,这样进程就不能写/usr了:

我们把这个ruleset施加起来让它生效:

想要体验的童鞋可以用这个例子启动你的进程,它设置好ruleset后,会去call exec启动命令行参数指定的程序:

https://github.com/landlock-lsm/linux/blob/landlock-v34/samples/landlock/sandboxer.c

LL_FS_RO环境变量是可读文件的列表,LL_FS_RW环境变量是可读写文件的列表,运行方法:


LL_FS_RO=”只读路径” \LL_FS_RW=”可写路径” \sandboxer  ./a.outa.out是你的想要安全沙盒的程序。

在下已经一睹为快,在/home/baohua下面创建2个目录1,2,然后创建/home/baohua/1/1/home/baohua/2/12个文件,限制第一个目录只读:

童鞋们看明白了吗?我用sandboxer去启动cat,2个文件都是成功的。但是,去启动echo,/home/baohua/1/1是不允许写的,但是/home/baohua/2/1是可以写的。实际上,/home/baohua/1/1和/home/baohua/2/1并没有丝毫的不同。landlock在发挥作用了!


系统调用的堆栈随机化

这是一项安全增强,它允许对系统调用发生时,内核使用的堆栈添加一个随机偏移。这给基于stack的攻击增加了难度,因为stack攻击通常要求stack有个固定的layout。现在每次系统调用,stacklayout都变化的话,黑客就比较捉摸不定了。比如ARM64主要修改了invoke_syscall()这个函数:

这个东西听起来很高大上,但是它的原理可能简单地你想哭,NO BB! show me the code:

它实际上就是每次系统调用把offset随机化一下,然后通过__builtin_alloca()stack里面分配一些stack空间,于是导致stack的位置移动。我们可以写个非常简单的应用程序来验证原理:

然后编译

gcc 1.c -fno-stack-protector -O0运行:

亲爱的,你有没有发现,10次函数调用的时候,每次stack临时变量的位置都不一样!!?


printk无锁ringbuffer的进一步优化

锁什么,不锁什么,锁大还是锁小,从来都是一个问题。宫锁心玉、宫锁珠帘、宫锁沉香、宫锁连城、宫锁printk......

内核工程师,可能真地被printk宠坏了,printk的优势是在Linux的任意CPU、任意线程、任意中断(甚至包括NMI)都可以调用,呼之即来挥之即去。你有没有想过,printk的实现里面可能有很大的锁代价的?你怎么保证一个人在打印”abc”,另外一个人再打印”def”,它不把2个人的打印串扰呢?如何避免各种死锁的可能性?很多操作系统为了避免这种代价,干脆禁止了一些上下文对类似print函数的调用,比如VxWorks的中断服务程序是不能调用printf()的。所以Linuxprintk是一个极端复杂的存在。John Ogness 童鞋曾经说过:If it is part of printk, it is already implicitly on every line of code.

生命不息,内卷不止。printk在内核不断演进,可以看成一个锁粒度逐步缩小,直至lockless的一个典范。

19910.01版的printk非常简单,没有现代意义上的logbuf这个环形缓冲区,直接把buffertty里面写:

这个时候,显然还没有loglevelconsole的概念,也完全不支持多核;上世纪90年代的内核逐步在printk加入了ringbuffer(logbuf)loglevlconsole等的概念,以及对syslogd等用户态服务唤醒的支持。

直至1998年,Linux 2.1.80开始支持多核printk,通过一个spin_lock,把所有多核的printk串行化,各个处理器顺序打印(图片来源https://elinux.org/images/7/7c/Elce-printk-v1.pdf):

2printk必须等第1printk彻底完成才能开始,这个printk的效率是非常低的。按照Amdahl定律,此种实现串行度100%,显然scalability很差。

现代意义上的printk,诞生于20019月的2.4.10,开始支持异步的打印。这个时候,printk开始使用2个锁:

  • console_lock semaphore:用于在console打印

  • logbuf_lock spinlock:用于写环形缓冲区logbuf

2个锁其实把写logbuf和在console打印的动作某种意义上并行化了:

只有拿到console_lock的任务负责打印,但是在打印的同时,其他任务只要能拿到logbuf_lock,是可以写logbuf的。

由于printk拿了logbuf这样的锁,如果在printk的过程中,发生不同寻常的NMI(比如,即便logbuf_lock的附加屏蔽IRQ版本——logbuf_lock_irqsave也屏蔽不了NMI),而这个NMI也要printklogbuf啥的,则可能造成死锁。所以在Linux 3.19后,引入了seq_bufferNMIlog,写入一个安全的per-CPUbuffer,而不是像其他printk那样写入全局的logbuf。之后,在NMI handler结束后的相对安全的上下文,把per-CPU seq_buffer里面的东西flush出去(比如Linux 4.7通过irq_work延后这个工作)。所以,此时的逻辑变成了:


这样就导致了printk依赖一个临时的所谓safe buffer。这种safe buffer的理念,也被用来避免printk自己递归(printk的实现调用printk)引起的死锁。在递归的printk里面,内容也如NMI那样写入safe buffer,之后在安全的上下文才把这个buffer的内容flush出去。这种思路,其实也是数据结构分化以避免全局锁的思路,比如太平天国洪秀全暂时没有办法夺取北京城,就先在南京城占山为王,然后伺机再取北京。北京城1个数据结构,南京城是另1个。

printklogbuf有各种NMI、递归的坑的,前面基本就是在想办法绕坑。绕坑的话,进取心实在有限,比如天王后面放弃了007,选择了躺平,天国最后完蛋了。但是内核的进取心很大,在5.10中,内核提交了一个locklessringbuffer,可安全地用于一切上下文,避免了死锁,也为避免NMI等场景对临时的per-CPU safe buffer依赖的去除提供了可能性,应该是更加接近printk需求的本质。注意,5.10内核printk的这个lockless ringbuffer支持多个读者、多个写者安全的,它本身的实现比较复杂,更多涉及数据结构的知识,具体的细节可以参考这个commit(大约2000行代码):

但是5.10仍然有少量代码路径依赖 logbuf_lock,比如kmsg_dumpsyslog 、格式化消息用的临时buffer等(毕竟5.10之前的代码用logbuf_lock用地比较奔放)。

5.13中,内核进一步移除了 logbuf_lock,从而基本接近了locklessprintk。移除的方法是要么直接删没必要的 logbuf_lock调用,要么用一个特定的更小锁来替换。比如,之前syslog里面的 syslog_seq, syslog_partial, syslog_time clear_seq 是靠 logbuf_lock保护的,现在重新引入一个它自己的锁syslog_lock

这种思路其实就是分而治之,逐步细化瓦解。就像以前内核有个BKL,后面它的使用场景,被一个个更小的锁细化代替,直至最后BKL被彻底消灭一样。


BPF可调用内核函数

技术上来讲BPF程序载入内核的时候,内核会执行严格的检查,内核和BPF程序能实际互动的范围非常有限,主要是内核调用BPF而不是反过来。Linux 5.13内核则允许特定program typeBPF程序直接调用特定的内核函数,为确保调用的安全,目前内核仅仅授权了 tcp_slow_start() tcp_cong_avoid_ai()等这种TCP拥塞控制相关的函数(tcp-cc helper)供BPF拥塞控制程序直接调用,这样BPF拥塞控制程序不需要把这些函数再copy-paste一遍。

内核net/ipv4/bpf_tcp_ca.c的代码显示了这个verify的过程,需要在相应的bpf_verifier_ops中添加check_kfunc_call()成员函数:

check_kfunc_call()的成立条件就是特定函数必须是在bpf_tcp_ca_kfunc_ids集合里面的白名单函数,比如:

这个时候,哥在想,如果我把kprobe这种program typeBPFcheck_kfunc_call()永远返回真,我不是可以在kprobeBPF中为所欲为?

比如我可以尝试在任何kprobe点对应的BPF程序上,调用barrysong_hack_print()这个函数?目前还没有尝试,想做实验的童鞋,可以仿照这个commit中的例子完成,这是一个测试案例:


公共的IO PAGE Fault支持

这个特性主要用于用户空间的DMA,特别适用于SVA的场景,Shared Virtual Addressing (SVA)

SVA模式下,设备的IOMMU采用和CPUMMU共享的页表,从而让进程地址空间对设备可见。

图片来源:

https://events19.linuxfoundation.cn/wp-content/uploads/2017/11/Shared-Virtual-Addressing_Yisheng-Xie-_-Bob-Liu.pdf

5.13内核中,ARM SMMU和UACCE (Unified/User-space-access-intended Accelerator Framework) 合入了共享SVA的支持,并将相关IO Page FaultIOPF)的代码提炼成了通用的drivers/iommu/io-pgfault.c代码。我们都知道,Linux的内存管理重度近乎强迫症式地依赖CPUpage fault,比如demanding page, swapCoW等,内存都是在page fault发生后申请内卷进来的。现在,设备也共享了进程的内存,这样设备访问这些页面的时候,仍然可能产生类似CPUpage fault帮忙把进程缺少的页面申请出来。不过设备是先发一个中断,然后内核在中断服务程序里面调用handle_mm_fault()来处理缺页,这样设备产生的IOPF同样可以帮忙demanding page(比如设备DMAmalloc()后还没获得的内存)。似乎设备变地非常类似进程里面的一个线程,不过我们仔细一想,这里仍然有一个逻辑讲不通,如果我们把线程和Device并列:

当线程写空指针,CPU会收到同步的Page Fault(在*p=10的指令卡住,并最终给进程产生segment fault);但是进程启动设备在用户态去做DMA,设备写无效的地址,显然也会收到IOPF,但是我们却没办法定位到对应的代码行。在加上中断啥时候进ISR的问题,这种IOPF行为总体对进程而言异步的。比如:

p = malloc(1M);device_write(p, 2M);其实写前1MB都没有问题,但是到1MB后,其实就是非法地址了,设备啥时候写完1MB,这个完全是异步的。

另外这个时候,内核应该给进程发什么信号也是个问题?CPU碰到这种情况,显然就是发SIGSEGV;设备这里,IOPF的中断服务程序,目前似乎是没有发,理想情况下,是不是至少也应该发一个类似SIGBUS或者什么信号,不过无论如何,进程也无法同步检测到哪里的代码出了问题,更加不要说支持ASAN(Address Sanitizer)这种内存越界检查技术了。

我们期待后续内存继续对这个问题给出一个明确的说法,也期待更多的童鞋发patch来让内核能自圆其说。

时光永是流逝,街市依旧太平。内核的每个新版本发布,之于搬砖的码农,已泛不起任何的涟漪。但是,钟爱内核的人们,仍然在孜孜不倦地追随。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭