当前位置:首页 > 公众号精选 > 8号线攻城狮
[导读]▼点击下方名片,关注公众号▼看到差分输入电路对共模信号抑制作用和差模信号放大作用的介绍,想写出来和大家一起讨论,很多资料网络都有,就再加一些自己的理解和分析吧。差分放大器是构成很多芯片电路的基础,比如运放的输入极一般是差分输入极电路,它是由两个对称的共源放大器(或者共射放大器)通...

点击下方名片,关注公众号

看到差分输入电路对共模信号抑制作用和差模信号放大作用的介绍,想写出来和大家一起讨论,很多资料网络都有,就再加一些自己的理解和分析吧。


差分放大器是构成很多芯片电路的基础,比如运放的输入极一般是差分输入极电路,它是由两个对称的共源放大器(或者共射放大器)通过源极电阻Rs相互耦合组成的。

对于输入信号可以分解为一对数值相等,极性相同的共模信号和一对数值相等,极性相反的差模信号,即:


Vi1=Vic Vid/2


Vi2=Vic-Vid/2


其中

Vic=(Vi1 Vi2)/2. Vid=Vi1-Vi2


所以对差分输入电路分别注入差分信号和共模信号,分别得到输出信号。随后用叠加原理,就可以得到总的输出。


1.1

先用差分信号输入做分析,一般可认为下图中的公共源极是交流GND,先做个简单的证明:

假设公共源极电位是Vs,约定gm1=gm2,R1=R2=R


M1增加交流信号Vid/2,


对M1的Vgs1=Vid/2-Vs,因此M1增加的电路ids1=Vgs1*gm1,从D流向S;


M2增加交流信号-Vid/2.


对M2的Vsg2=Vid/2 Vs,因此M2增加的电路ids2=Vsg2*gm2,从S流向D;


流过Rs的电流Is=Vs/Rs,由KCL得,ids1=ids2 Is,


得到:gm*(Vid/2-Vs)=Vs/Rs gm*(Vid/2 Vs)


Vs*(2*gm 1/Rs)=0,显然只有Vs=0,等式才成立,所以认为公共源极是交流GND。


既然Vs=0.那么M1在输入信号作用下增加的电流就是Ids1=Vid/2*gm,因此输出Vo1=-Vid/2*gm*R


M2在输入信号作用下增加的电流就是Ids1=-(-Vid/2*gm),因此输出Vo2=Vid/2*gm*R,


所以差分输入的情况话,M1单端输出的话是反相,但是M2的输出相相对M1的输入是同相呢。这个对于判断负反馈需要考虑的。


双端输出Vo=Vo2-Vo1=Vid*gm*R


一般这个时候定义Avd=gms*R/2为单端输出差分信号的增益。



1.2

当输入增加共模信号的,公共源极就不是交流GND了,这是由于共模信号输入会将公共源极电压上抬。

流过M1和M2的电流方向相同,都是Ids,那么流过Rs的电流就是2*Is,因此Vs=2Ids*Rs,

如果电流源B1是cascode电流源,一般Rs=(1 gm*ro)*ro≈gm*ro*ro,这个值很大的。

关于cascode的输出阻抗,网上有很多说明,这里不做展开。

既然知道了Vs的电压,那么可以把电流源结构差分,比较利于分析。

分别相当于M1和M2的源极电阻是2*Rs,此时加载在M1的Vgs电压大小,相当于1/gm和2*Rs电阻分压,1/gm为从M1源极看进去的电阻


可以根据下面的示意图得到Vgs大小,由于2*Rs很大,所以Vgs很小很小;


因此Ids=Vgs*gm也比较小,所以Vo1=Vgs*gm*R≈Vcm*gm*R/(2*gm*Rs),只要2*Rs足够大,所以输出的Vo1可以忽略不计。


因此Avc=-R/(2*Rs)成为单端共模放大倍数,需要越小越好,要是差分输出Vo1-Vo2=0,不考虑器件一致性问题,差分共模信号就可以完全抑制。

但在半导体设计中,R1和R2不可能完全一样,gm1和gm2也不能一样,差分共模信号就不能完全抑制了。



1.3

差模信号和共模信号共同作用下,总的单端输出信号Vout=(Vid/2)*gm*R Vcm*R/(2*Rs)=(Vid/2)*Avd Vcm*Avc,只有Avd越大,就放大差分信号,Avc越小就抑制共模信号。


通过上述分析就可见,差分放大器的差模性能和共模性能有很大不同,其中最主要的就是共模电压远小于差模电压增益,或者说,相对于差模信号,差分放大器对共模信号有很强的抑制作用。


因此就定义CMRR-共模抑制比来描述这种抑制作用的强弱。一般在电路中,如果电路完全对称,没有任何偏差,就只需要考虑单端输出时候的共模抑制比,就是差模电压增益和共模电压增益的比值的绝对值,CMRR=|0.5*Avd/Avc|.



以上的分析是基于绝对对称的两个MOS管,所以电路两边对称的理想情况下差分放大器的性能。对于实际的差分放大器总是存在两边MOS管特性和电阻R1.R2不对称的情况。


比如说,如果R1和R2的不匹配,分别是R △R和R-△R,那么对于共模输入信号的增益Vo1=Vcm*[(R △R)/(2*Rs)],Vo1=Vcm*[(R-△R)/(2*Rs)],


因此共模信号输入双端输出的电压Vo=Vo1-Vo2=Vcm*[R/(2*Rs)]*[△2R/R],理想器件的双端输出共模增益Avcm=0,现在由于器件的不匹配,所以就变成Avcm=[R/(2*Rs)]*[△,这个值虽说很小,但是也会影响共模增益比,对共模信号的抑制能力。


除此之外,两只管子的gm也会存在差异,也会影响性能。所以在运放的datasheet上面,CMRR不是无穷大,一般都是100dB左右,也是因为这个原因。


此外,实际电路中对于差分信号输入,公共源极也是近似交流GND,不是绝对的GND,所以上面的公式需要根据实际使用修正,这个在论坛其他帖子中有过证明,感兴趣的可以参考下面帖子:https://bbs.21ic.com/icview-3141098-1-1.html。


由于输入差分管可以是MOS管也可以是双极性晶体管,在这里用MOS管举例做了分析。一般来说,相比双极性晶体管的差分输入极,MOS管的差分输入极在线性范围和非限幅范围都要更大一些。实际芯片设计中,半导体公司都会根据需求进行相应的设计。

出品 21ic论坛   作者:kk的回忆
网站:bbs.21ic.com

end


微信公众号后台回复关键字“加群”,添加小编微信,拉你入技术群。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭