↓推荐关注↓日期和时间是
编程中非常常用的功能。本文是对C 11到C 17中相关编程接口的介绍。
介绍
C 中可以使用的日期时间API主要分为两类:
- C-style 日期时间库,位于
头文件中。这是原先
头文件的C 版本。 chrono
库:C 11中新增API,增加了时间点,时长和时钟等相关接口。
在C 11之前,C
编程只能使用C-style日期时间库。其精度只有秒级别,这对于有高精度要求的程序来说,是不够的。但这个问题在C 11中得到了解决,C 11中不仅扩展了对于精度的要求,也为不同系统的时间要求提供了支持。另一方面,对于只能使用C-style日期时间库的程序来说,C 17中也增加了timespec将精度提升到了纳秒级别。
代码示例
本文中所贴出的代码示例可以到我的Github上获取:
paulQuei/cpp-date-time[1]。或者,你也可以直接通过下面这条命令获取所有源码:
git clone https://github.com/paulQuei/cpp-date-time.git
为了简化书写,本文中给出的代码都已经默认做了以下操作:
#include
#include
#include
using namespace std;
C-style 日期时间库
C-style 日期时间库中包含的函数和数据类型说明如下:
函数
函数 | 说明 |
---|
std::clock_t clock() | 返回自程序启动时起的处理器时钟时间 |
std::time_t time(std::time_t* arg) | 返回自纪元起计的系统当前时间 |
double difftime(std::time_t time_end, std::time_t time_beg) | 计算时间之间的差 |
int timespec_get(std::timespec* ts, int base) ∗∗ | 返回基于给定时间基底的日历时间 |
char* ctime(const std::time_t* time) | 转换 time_t 对象为文本表示 |
char* asctime(const std::tm* time_ptr) | 转换 tm 对象为文本表示 |
std::size_t strftime(char* str, std::size_t count, const char* format, const std::tm* time) | 转换 tm 对象到自定义的文本表示 |
std::size_t wcsftime( wchar_t* str, std::size_t count, const wchar_t* format, const std::tm* time) | 转换 tm 对象为定制的宽字符串文本表示 |
std::tm* gmtime(const std::time_t* time) | 将time_t转换成UTC表示的时间 |
std::tm* localtime(const std::time_t *time) | 将time_t转换成本地时间 |
std::time_t mktime(std::tm* time) | 将tm格式的时间转换成time_t表示的时间 |
数据类型
名称 | 说明 |
---|
time_t | 从纪元起的时间类型 |
tm | 日历时间类型 |
timespec∗∗ | 以秒和纳秒表示的时间 |
clock_t | 进程运行时间 |
size_t | sizeof 运算符返回的无符号整数类型 |
结构梳理
这里有不少的函数和数据类型,刚开始接触的时候似乎不太容易记得住。但实际上,如果我们把它们画成一张图就比较好理解了,如下所示:
在这幅图中,以数据类型为中心,带方向的实线箭头表示该函数能返回相应类型的结果。
- clock函数是相对独立的一个函数,它返回进程运行的时间,具体描述见下文。
- time_t描述了纪元时间,通过time函数可以获得它。但它只能精确到秒级别。
- timespec类型在time_t的基础上,增加了纳秒的精度,通过timespec_get获取。这是C 17上新增的
- tm是日历类型,因为它其中包含了年月日等信息。通过gmtime,localtime和mktime函数可以将time_t和tm类型互相转换。
- 考虑到时区的差异,因此存在gmtime和localtime两个函数。
- 无论是time_t还是tm结构,都可以将其以字符串格式输出。ctime和asctime输出的格式是固定的。如果需要自定义格式,需要使用strftime或者wcsftime函数。
进程运行时间
clock函数返回进程迄今为止所用的处理器时间。单独调度该函数一次所返回的值是没有意义的,只有两次不同值的差才有意义。该值表示了进程从关联到程序执行的实现定义时期开始,所用的粗略处理器时间。而且这个值仅仅是处理器的时钟周期。如果希望将其转换为以秒为单位,还需要将它除以常量
CLOCKS_PER_SEC
。下面是一段代码示例:
clock_t time1 = clock();
double sum = 0;
for(int i = 0; i < 100000000; i ) {
sum = sqrt(i);
}
clock_t time2 = clock();
double t = ((double)(time2 - time1)) / CLOCKS_PER_SEC ;
cout << "CLOCKS_PER_SEC: " << CLOCKS_PER_SEC << endl;
cout << "Process running time: " << t << "s" << endl;
其输出如下:
CLOCKS_PER_SEC: 1000000
Process running time: 0.80067s
你可能知道,现代的操作系统上进程都是分时占用处理器的,所以程序的处理器时间会小于真实世界流逝的时间。但这仅仅是对于单处理器而言的。在多处理器系统上,如果你的进程使用了多线程,那么其所用的处理器时间可能比真实世界流逝的时间值还要大。
关于纪元时间
纪元时间(Epoch time)又叫做Unix时间或者POSIX时间。它表示自1970 年 1 月 1 日 00:00 UTC 以来所经过的秒数(不考虑闰秒)。它在操作系统和文件格式中被广泛使用。这个想法很简单:以一个时间为起点加上一个偏移量便可以表达任何一个其他的时间。
如果你好奇为什么选这个时间作为起点,可以点击这里:Why is 1/1/1970 the “epoch time”?[2]。
下面是一个代码示例:
time_t epoch_time = time(nullptr);
cout << "Epoch time: " << epoch_time << endl;
其输出如下:
Epoch time: 1577433897
time函数接受一个指针,指向要存储时间的对象,通常可以传递一个空指针,然后通过返回值来接受结果。虽然标准中没有给出定义,但time_t通常使用整形值来实现。作为一个程序员,你可能马上会意识到整形的位数和溢出的问题。事实也刚好是这样,在一些历史实现上使用了32位有符号整数来实现time_t,其造成的结果就是:在
2038-01-19 03:14:07[3]这个时间点,这个值会溢出。不过不用担心太多,这个时间距现在还有将近20年,到那个时候,估计那些有问题的系统已经不会再继续运转或者已经被升级了。
计算时间差
在一些情况下,我们需要计算一个操作的时间长度。这自然的就需要计算两个时间点的差分。这时就可以使用difftime函数。事实上,我们知道time_t以秒级别表示纪元时间,并且它又是以整形实现的,直接将两个time_t相减,可以得到相同的结果。下面是一个代码示例:
time_t time1 = time(nullptr);
double sum = 0;
for(int i = 0; i < 1000000000; i ) {
sum = sqrt(i);
}
time_t time2 = time(nullptr);
double time_diff = difftime(time2, time1);
cout << "time1: " << time1 << endl;
cout << "time2: " << time2 << endl;
cout << "time_diff: " << time_diff << "s" << endl;
其输出如下,可以看到这正是time1和time2两个整数相减的结果:
time1: 1577434406
time2: 1577434414
time_diff: 8s
注意:time_t只精确到秒,它无法描述毫秒级别的时间,所以在有更高精度要求的情况下,需要使用下文提到的其他方法。
输出时间和日期
当然,我们还希望将时间以字符串的形式打印出来。这时就可以使用ctime函数。不过该函数打印的格式是固定的:
Www Mmm dd hh:mm:ss yyyy\n
。如果你希望自定义输出的格式,可以使用下文提到的其他方法。下面是一个代码示例:
time_t now = time(nullptr);
cout << "Now is: " << ctime(