几十行C代码就能实现一个shell?
扫描二维码
随时随地手机看文章
继 300来行代码带你实现一个能跑的最小Linux文件系统 之后,我们来看看如何60行C代码实现一个shell!在实现它之前,先看看这样做的意义。美是有目共睹的。Unix之美,稍微体会,便能得到。1969年,Unix初始,没有fork,没有exec,没有pipe,没有 “一切皆文件” ,但是那时它已经是Unix了。它简单,可塑。Melvin Conway在1963年的论文中叙述fork思想时就解释说并行路径要用结果来交互,也就是在汇合的join点来同步结果。这个同步点所得到的,就是一个并行进程的 输出 。在此之外,Unix还有另一个原则,就是 组合小程序!Unix把一系列功能单一的小程序组合成一个复杂的逻辑,这个原则有以下优势:
- 每一个小程序都很容易编写。
- 每一个小程序可以分别完成。
- 每一个小程序可以分别迭代修复。
- 多个小程序可以自由组合。
- …
对外暴露的越少,程序越内聚。这是一种范式,类似RISC处理器也是抽象出仅有的load和store来和内存交互。简单来讲,Unix程序通过输入和输出来彼此连接。下面是一幅来自Wiki的图示:
详见Pipeline (Unix):
https://en.wikipedia.org/wiki/Pipeline_(Unix)Unix的另一个原则,即著名的 “一切皆文件!” 连接输出和输入的那个管道在Unix中被实现为Pipe,显然,它也是文件,一个FIFO文件。说实话,协作几个小程序形成一个大逻辑的思想还是来自于Convey,在Convey的论文里,他称为 协程, Pile可以说是直接实现了 Convey协程 之间的交互。有关这段历史,请看:
http://www.softpanorama.org/Scripting/Piporama/history.shtml用Pipe连接作为输出和输入连接Unix进程可以做成什么事情呢?让我们去感受一个再熟悉不过的实例,即数学式子:
我们把运算符加号,乘号,除号(暂不考虑括号,稍后解释为什么)这些看作是程序(事实上它们也真的是),那么类似数字3,5,7,6就是这些程序的输入了,这个式子最终需要一个输出,获得这个输出的过程如下:
- 数字3,5是加号程序的输入,3 5执行,它获得输出8.
- 第1步中的输出8连同数字7作为乘号程序的输入,8 × 7执行,获得输出56.
- 第2步中的输出56连同数字6作为除号的输入,…
写出上面的式子中每一个数学运算符的程序并不困难,比如加号程序:
// plus.c
#include
int main(int argc, char **argv)
{
int a, b;
a = atoi(argv[1]);
b = atoi(argv[2]);
a = a b;
printf("%d\n", a);
}
同样,我们可以写出除法,直到偏导的程序。然后我们通过pipe就能将它们组合成任意的数学式子。现在谈谈Unix组合程序的具体写法,如果我们要化简薛定谔方程,我们应该如何用Unix命令写出与上述式子等价的组合程序命令行呢?我们无法像数学家手写那样随意使用括号,显然,计算机并不认识它。我们能够使用的只有两个符号:- 代表具体Unix小程序的命令。
- Pipe符号"|"。
数学式子里的括号,其实它无关紧要,括号只是给人看的,它规定一些运算的优先级顺序,这叫 中缀表达式 ,一个中缀表达式可以轻松被转换为 前缀表达式,后缀表达式 ,从而消除括号。事实上,Unix的Pipe最初也面临过这样的问题,到底是中缀好呢,还是前/后缀好呢?我们现在使用的Unix/Linux命令,以cp举例:
cp $in $out
这是一个典型的前缀表达式,但是当pipe的发明者McIlroy最初引入pipe试图组合各个程序时,最初上面的命令行被建议成:$in cp $out
就像我们的(3 5) × 8 一样。但是这非常不适合计算机处理的风格,计算机不得不首先扫描解析这个式子,试图:- 理解 “括号括起来的要优先处理” 这句复杂的话;
- 区分哪些是输入,哪些是操作符…
pro1 $stdin|pro2|pro3|pro4|...|proX $stdout
轻松组合成任意复杂的逻辑。Pipe协同组合程序的Unix原则是一个创举,程序就是一个加工过滤器,它把一系列的输入经过自己的程序逻辑生成了一系列的输出,该输出又可以作为其它程序的输入。在Unix/Linux中,各种shell本身就实现了这样的功能,但是为了彻底理解这种处理方式的本质,只能自己写一个才行。来写一个微小的shell吧。再次看上面提到的Unix Pipe的处理序列:pro1 $stdin|pro2|pro3|pro4|...|proX $stdout
如果让一个shell处理以上组合命令,要想代码量少,典型方案就是递归,然后用Pipe把这些递归调用过程给串起来,基本逻辑如下:int exec_cmd(CMD *cmd, PIPE pipe)
{
// 持续解析命令行,以pipe符号|分割每一个命令
while (cmd->next) {
PIPE pp = pipe_create();
if (fork() > 0) {
// 父进程递归解析下一个
exec_cmd(cmd->next, pp);
return 0;
}
// 子进程执行
dup_in_out(pp);
exec(cmd->cmdline);
}
if (fork() > 0) {
wait_all_child();
return 0;
} else {
dup_in_out(pp);
exec(cmd->cmdline);
}
}
按照上面的思路实现出来,大概60行左右代码就可以:// tinysh.c
// gcc tinysh.c -o tinysh
#include
#include
#include
#include
#define CMD_BUF_LEN 512
char cmd[CMD_BUF_LEN] = {0};
void fork_and_exec(char *cmd, int pin, int pout)
{
if (fork() == 0) {
if (pin != -1) {
dup2 (pin, 0);
close(pin);
}
if (pout != -1) {
dup2 (pout, 1);
close(pout);
}
system(cmd);
exit(0);
}
if (pin != -1)
close(pin);
if (pout != -1)
close(pout);
}
int execute_cmd(char *cmd, int in)
{
int status;
char *p = cmd;
int pipefd[2];
while (*p) {
switch (*p) {
case '|':
*p = 0;
pipe(pipefd);
fork_and_exec(cmd, in, pipefd[1]);
execute_cmd(p, pipefd[0]);
return 0;
default:
p ;
}
}
fork_and_exec(cmd, in, -1);
while(waitpid(-1,