当前位置:首页 > 公众号精选 > Murata村田中国
[导读]同学们,《静噪基础课程》本期继续开讲!上一章介绍的是产生电磁噪声的机制有哪些因素会使噪声问题复杂化呢?第3 章  噪声 问题复杂 化 的因素   第1章为什么需要EMI静噪滤波器第2章产生电磁噪声的机制第3章噪声问题复杂化的因素3-1.简介3-2.谐振和阻尼3-2-1.并联谐振和...

同学们,


《静噪基础课程》本期继续开讲!


上一章介绍的是


产生电磁噪声的机制


有哪些因素会使噪声问题复杂化呢?



第 3 章
噪 声 问 题 复 杂 化 的 因 素




第1章 为什么需要EMI静噪滤波器


第2章 产生电磁噪声的机制


第3章 噪声问题复杂化的因素


3-1.简介


3-2.谐振和阻尼


  • 3-2-1. 并联谐振和串联谐振


  • 3-2-2. 关于谐振电路EMC措施的问题


  • 3-2-3. 数字电路连接至谐振电路时


  • 3-2-4. 无电感器或电容器的情况下产生谐振的示例


  • 3-2-5. 电阻器及铁氧体磁珠的阻尼作用


  • 3-2-6. 数字信号的阻尼


3-3.噪声的传导和反射


3-4.源阻抗


3-5.小结


3-2谐振和阻尼



3-2-2. 并联谐振和串联谐振


‍‍‍‍‍‍‍‍‍


(1) 谐振电路放大电压




如果电路中存在意外产生的谐振,阻抗会在谐振频率处发生显著变化,导致较大的电流或电压,这会是产生噪声干扰的一个原因。例如,从外侧向图3-2-2(a)中计算的串联谐振电路输入交流信号。



图3-2-2 谐振电路的阻抗(该图表示电抗在数轴上的大小)



如图3-2-4所示,当使用输出阻抗为50Ω的信号发生器施加电压恒定(振幅0.5V)的信号时,电容器会在50MHz谐振频率处产生比输入信号高数倍的电压。


图3-2-4 谐振电路的频率特征示例(计算值)
在这种情况下,电容器或电感器上产生的电压达到输入电压与Q的乘积。如何估算Q值将在章节3-2-5中作解释。图3-2-4的的情况表明Q = 6.3。



(2) 谐振电路可能意外产生



图3-2-4中的测试电路包括一个电容器和一个电感器,其中使用的常数为数字电路中通常会产生的值。例如,数字IC的输入端子具有不同pF的浮动静电容量。线路的电感约为1uH/米。




因此,如果将约1m的电缆连接至数字IC的输入端子(将其连接至外部传感器等),就会产生此处所示的谐振电路。




如果误将导体连接至此点,就会成为噪声发射的原因之一。



(3) 在输入电压很小的情况下内部电压升高



如图3-2-2(a)所示,串联谐振电路的阻抗在谐振频率处达到较低值。因此,您可能简单地认定电压降低。但实际上电压为什么会升高呢?



图3-2-5显示了电压的分解。谐振电路入口处(电阻器和电感器的中点)处的电压确实降低到非常小的水平。但是,由于阻抗降低,电流变大了。因此,谐振电路内产生了比所施加电压更高的电压。




图3-2-5 谐振电路不同位置的电压(计算值)



在电容器接收一定电压时,为什么谐振电路入口处的电压会消失?



此时,电感器也像电容器一样,接收了完全相同的电压。因为此电压的方向与电容器电压的方向相反,所以在谐振电路入口处几乎察觉不到任何电压。



(4) 谐振电路各点的电压完全不同



当电路发生谐振时,电路各点的电压相差很大。即使某点的电压测量值似乎表明噪声有所减弱,但整个噪声发射的测量值也可能保持不变甚至有所升高。所以需要注意这样的情况。



上面的例子是关于串联谐振电路的情形。



如果是并联谐振电路,流经电容器和电感器的电流会比输入信号的电流更高。因为这种电流也是产生噪声的原因之一,所以在并联谐振电路的情况下也需要注意。



3-2.谐振和阻尼 - 重点内容


√ 谐振可以是串联谐振或并联谐振


串联谐振使阻抗在谐振频率处降到最低值(理论上为零)。


并联谐振使阻抗在谐振频率处升到超高值(理论上为无穷大)。


在谐振频率处,由于电压和电流极大,容易产生噪声问题


阻尼电阻器及铁氧体磁珠可用于抑制谐振。




附:第三章参考文献及下载



  1. [1] [Japanese] 電気理論(第2版),池田哲夫,森北出版 2006


  2. [2] High-Speed Digital Design: a Handbook of Black Magic,Howard Johnson, Martin Graham,Prentice Hall PTR, 1993


  3. [3] High-Speed Signal Propagation: Advanced Black Magic,Howard Johnson, Martin Graham,Pearson Education, Inc. 2003


  4. [4] [Japanese] よくわかるプリント板実装の高速・高周波対策,井上博文,日刊工業新聞社 2009


  5. 数字IC电源静噪和去耦应用手册 (点击下载PDF: 3.5MB) ,Murata Manufacturing Co., Ltd. Catalog C39C, 2010




下课!


下节课,记得相约在静噪基础小课堂哟~




关于


村田


株式会社村田制作所是一家进行基于陶瓷的无源电子元件与解决方案、通信模块和电源模块之设计、制造与销售的全球领先企业。村田致力于开发先进的电子材料以及领先的多功能和高密度模块。公司的员工和制造基地遍布世界各地。业务咨询点这里



求分享


求点赞


求在看



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭