当前位置:首页 > 公众号精选 > Murata村田中国
[导读]同学们,《静噪基础课程》本期继续开讲!上一章介绍的是产生电磁噪声的机制那么,有哪些因素会使噪声问题复杂化呢?第3 章  噪声 问题复杂 化 的因素   第1章为什么需要EMI静噪滤波器第2章产生电磁噪声的机制第3章噪声问题复杂化的因素3-1.简介3-2.谐振和阻尼3-2-1.并联...

同学们,


《静噪基础课程》本期继续开讲!


上一章介绍的是


产生电磁噪声的机制


那么,有哪些因素会使噪声问题复杂化呢?




第 3 章
噪 声 问 题 复 杂 化 的 因 素




第1章 为什么需要EMI静噪滤波器


第2章 产生电磁噪声的机制


第3章 噪声问题复杂化的因素


3-1.简介


3-2.谐振和阻尼


  • 3-2-1. 并联谐振和串联谐振


  • 3-2-2. 关于谐振电路EMC措施的问题


  • 3-2-3. 数字电路连接至谐振电路时


  • 3-2-4. 无电感器或电容器的情况下产生谐振的示例


  • 3-2-5. 电阻器及铁氧体磁珠的阻尼作用


  • 3-2-6. 数字信号的阻尼


3-3.噪声的传导和反射


3-4.源阻抗


3-5.小结


3-1简 介


第2章介绍了产生电磁噪声的机制,并特别详细地介绍了数字电路中产生的噪声。




要应对电子设备噪声干扰,不仅需要了解噪声源,还必须知晓传输路径和天线的特征本章节详细介绍了其中的传输路径。




在此之前,已经通过较为简单的表述解释了噪声的产生(谐波除外)。但是,在解释噪声传输和发射的机制时,会提及传输理论、电磁学和天线理论中使用的术语(如图3-1-1所示)。如果不理解这些术语,就无法处理噪声问题。




图3-1-1 第3章将要介绍的内容



因此,本章节将(尽量使用较少的公式)解释这些术语,并介绍关于噪声的重要课题,如谐振和阻尼、噪声传导和反射以及源阻抗。



3-2谐振和阻尼


在产生噪声或接收到噪声感应时,谐振是一个重要因素。
如果电路中包含意外建立的谐振电路,则会在谐振频率处产生非常大的电流或电压,更易产生噪声干扰。尽可能消除电路中的谐振是很重要的。如果要抑制谐振,需使用阻尼电阻器。
本章节将介绍谐振和阻尼电阻器。



3-2-1. 并联谐振和串联谐振



(1) LC谐振电路




谐振指的是电路中的感应电抗和电容电抗在特定频率处相互抵消,这个特定频率就叫做“谐振频率”。




尽管能产生电抗(阻抗的虚数分量)的典型元件是电感器 (线圈) 和电容器,但任何其他元件,甚至连简单的导线都可以是产生谐振的要素,因为它们仍具有非常小的电抗。




(尽管除上述元件之外,天线、平行板、传输路径等也可能导致与EMC相关的谐振,但此处我们只着重于电感器和电容器产生的LC谐振。)




(2) 谐振电路的阻抗



如图3-2-1所示,谐振电路分两种: 串联谐振和并联谐振。根据图3-2-2中的计算示例,串联谐振使阻抗降至较低值(理论上为零),而并联谐振使阻抗升到超高值(理论上为无穷大)。




图3-2-1 串联谐振和并联谐振




图3-2-2 谐振电路的阻抗(该图表示电抗在数轴上的大小)



(3) 电抗抵消为零



如图3-2-3所示,电感器电抗和电容器电抗的量值在谐振频率处变为相等,两者相互抵消,最终相加之和为零。




图3-2-3 串联谐振使阻抗降至较低值的机制



图3-2-3解释了串联谐振的情形;如果是并联谐振,则将电抗替换为电纳(导纳的虚数成分),会出现电纳在谐振频率处被抵消为零。因此,阻抗升到超高值,这很容易理解。



(4) 谐振频率



无论是串联谐振还是并联谐振,都可以通过以下公式估算出谐振频率ƒ0。在图3-2-2的示例中,ƒ0约为50MHz。




公式3-2-1




(5) 谐振Q



谐振强度可通过指数Q(质量因子)来表示。Q越高表示谐振越强。指数Q也是用作表示电容器和电感器性能的指数。存在这样一种关系: 当使用Q值较大的电容器或电感器时,所建立谐振电路的Q值也较大。



如何估算Q值将在章节3-2-5中作解释。



(6) 电容器和电感器的自谐振



在高频范围内使用电容器或电感器时,由于其固有的寄生成分,电容器或电感器本身会在特定频率处导致谐振。这就叫做自谐振。



自谐振将在第6章中进一步讲述。



3-2.谐振和阻尼 - 重点内容


√ 谐振可以是串联谐振或并联谐振


串联谐振使阻抗在谐振频率处降到最低值(理论上为零)。


并联谐振使阻抗在谐振频率处升到超高值(理论上为无穷大)。


在谐振频率处,由于电压和电流极大,容易产生噪声问题


阻尼电阻器及铁氧体磁珠可用于抑制谐振。




附:第三章参考文献及下载



  1. [1] [Japanese] 電気理論(第2版),池田哲夫,森北出版 2006


  2. [2] High-Speed Digital Design: a Handbook of Black Magic,Howard Johnson, Martin Graham,Prentice Hall PTR, 1993


  3. [3] High-Speed Signal Propagation: Advanced Black Magic,Howard Johnson, Martin Graham,Pearson Education, Inc. 2003


  4. [4] [Japanese] よくわかるプリント板実装の高速・高周波対策,井上博文,日刊工業新聞社 2009


  5. 数字IC电源静噪和去耦应用手册 (点击下载PDF: 3.5MB) ,Murata Manufacturing Co., Ltd. Catalog C39C, 2010




下课!


下节课,记得相约在静噪基础小课堂哟~




关于


村田


株式会社村田制作所是一家进行基于陶瓷的无源电子元件与解决方案、通信模块和电源模块之设计、制造与销售的全球领先企业。村田致力于开发先进的电子材料以及领先的多功能和高密度模块。公司的员工和制造基地遍布世界各地。业务咨询点这里



求分享


求点赞


求在看



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭