你了解ADC芯片吗?设计ADC需要考虑什么?
扫描二维码
随时随地手机看文章
ADC,也就是我们平时所说的模数转换器。通过使用ADC,我们能实现很多工业上的器件。为了增进大家对ADC的认识,本文将对ADC芯片,以及设计ADC时需要考虑的因素予以介绍。如果你对ADC具有兴趣,不妨和小编一起继续往下阅读哦。
一、ADC芯片
ADC芯片是将模拟的信号转换为真实可见的数字信息的一个转换芯片,在现代科技中它有着举足轻重的位置,是现代化发展中不可或缺的元器件之一。
ADC芯片主要看两个基本指标,一个是速度—Speed,一个是精度—ResoluTIon。顾名思义,速度代表着ADC可以转换多大带宽—Bandwidth的模拟信号,带宽对应的就是模拟信号频谱中的最大频率。精度就是衡量转换出来的数字信号与原来的模拟信号之前的差距。
ADC第一步操作是对模拟信号进行采样,说到采样,要先引入一个20世纪信息论中伟大的香农-奈奎斯特采样定理:为了不失真地恢复模拟信号,采样频率应该大于等于模拟信号带宽的2倍。换句话说,如果ADC的采样频率是Fs(Hz),那么它可以转换的模拟信号带宽至多是Fs/2(Hz)。对应采样频率为Fs(Hz)的ADC,它在时域里1秒中可以采集(1/Fs)点的信息。对于ADC的速度指标,我们通常用单位SPS(Sample Per Second)来表示,比如1MSPS代表着1M Samples Per Second,对应的ADC的采样频率就是1MHz,可以转换的模拟信号带宽至多是0.5MHz。
ADC第二步操作就是把采样的模拟信号量化成数字信号。数字信号代表的数值与模拟信号的真实数值之间的差距越小,代表着ADC的精度越高,我们通常用N-bit来表示精度,比如10-bit代表着数值之间的最大差距是1/(2^10)。精度越高的ADC,转换出来的数字信号越接近于原来真实的模拟信号。
ADC芯片的精度越来越高,所使用的方向也越来越广。如在PCBA方案开发鼎盛合的ADC芯片大多数就使用在测量衡器上面,与传感器等元器件配合使用做测量衡器的PCBA方案开发。
二、设计ADC需要考虑什么
在确定A/D转换器件在确定设计方案后,首先需要明确A/D转换的需要的指标要求,包括数据精度、采样速率、信号范围等等。
1.确定A/D转换器的位数在选择A/D器件之前,需要明确设计所要达到的精度。精度是反映转换器的实际输出接近理想输出的精确程度的物理量。在转化过程中,由于存在量化误差和系统误差,精度会有所损失。其中量化误差对于精度的影响是可计算的,它主要决定于A/D转换器件的位数。A/D转换器件的位数可以用分辨率来表示。一般把8位以下的A/D转换器称为低分辨率ADC,9~12位称为中分辨率ADC,13位以上为高分辨率。A/D器件的位数越高,分辨率越高,量化误差越小,能达到的精度越高。理论上可以通过增加A/D器件的位数,无止境提高系统的精度。但事实并非如此,由于A/D前端的电路也会有误差,它也同样制约着系统的精度。
比如,用A/D采集传感器提供的信号,传感器的精度会制约A/D采样的精度,经A/D采集后信号的精度不可能超过传感器输出信号的精度。设计时应当综合考虑系统需要的精度以及前端信号的精度。
2.选择A/D转换器的转换速率在不同的应用场合,对转换速率的要求是不同的,在相同的场合,精度要求不同,采样速率也会不同。采样速率主要由采样定理决定。确定了应用场合,就可以根据采集信号对象的特性,利用采样定理计算采样速率。如果采用数字滤波技术,还必须进行过采样,提高采样速率。
3.判断是否需要采样/保持器采样/保持器主要用于稳定信号量,实现平顶抽样。对于高频信号的采集,采样/保持器是非常必要的。如果采集直流或者低频信号,可以不需要采样保持器。
4.选择合适的量程模拟信号的动态范围较大,有时还有可能出现负电压。在选择时,待测信号的动态范围最好在A/D器件的量程范围内。以减少额外的硬件付出。
5.选择合适的线形度在A/D采集过程中,线形度越高越好。但是线形度越高,器件的价格也越高。当然,也可以通过软件补偿来减少非线性的影响。所以在设计时要综合考虑精度、价格、软件实现难度等因素。
以上便是此次小编带来的“ADC”相关内容,通过本文,希望大家对ADC芯片、ADC设计时需要考虑的因素具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!