[导读]要开发的应用似乎不存在解决方案是很正常的,甚至几乎是情理之中的。为了满足应用要求,我们需要想出一种超出市场上现有产品性能的解决方案。例如,应用可能需要具有高速、高电压、高输出驱动能力的放大器,同时还可能要求出色的直流精度、低噪声、低失真等。满足速度和输出电压/电流要求的放大器以及...
要开发的应用似乎不存在解决方案是很正常的,甚至几乎是情理之中的。为了满足应用要求,我们需要想出一种超出市场上现有产品性能的解决方案。例如,应用可能需要具有高速、高电压、高输出驱动能力的放大器,同时还可能要求出色的直流精度、低噪声、低失真等。
满足速度和输出电压/电流要求的放大器以及具有出色直流精度的放大器在市场上很容易获得,事实上很多都是如此。但是,所有这些要求可能无法通过单个放大器来满足。当遇到这样的问题时,有些人会认为我们不可能满足此类应用的要求,我们必须满足于平庸的解决方案,要么选用精密放大器,要么选用高速放大器,可能要牺牲一些要求。幸运的是,这并非全然正确。对此,有一种解决方案是采用复合放大器,本文将说明它是如何实现的。
复合放大器
复合放大器由两个独立的放大器组成,其配置方式使得人们既能实现每个放大器的优点,又能削弱每个放大器的缺点。
图1. 简单复合放大器配置
参考图1,AMP1具有应用所需的出色直流精度以及噪声和失真性能。AMP2满足输出驱动要求。在这种配置中,具有所需输出规格的放大器(AMP2)放置在具有所需输入规格的放大器(AMP1)的反馈环路中。下面将讨论这种配置涉及的一些技术及其益处。
设置增益
初遇复合放大器时,第一个问题可能是如何设置增益。为了解决这个问题,将复合放大器视为包含在大三角形内的单个同相运算放大器是有帮助的,如图2所示。想象大三角形是黑色的,我们无法看清里面的东西,那么同相运算放大器的增益就是1 R1/R2。揭开大三角形内部的复合配置并没有改变任何东西,整个电路的增益仍然由R1和R2的比率控制。
在这种配置中,人们很容易认为通过R3和R4改变AMP2的增益会影响AMP2的输出电平,表明复合增益会发生变化,但事实并非如此。通过R3和R4提高AMP2周围的增益只会降低AMP1的有效增益和输出电平,而复合输出(AMP2输出)保持不变。或者,降低AMP2周围的增益将会提高AMP1的有效增益。因此,复合放大器的增益一般仅取决于R1和R2。
图2. 复合放大器被视为单个放大器
本文将讨论实现复合放大器配置的主要优点和设计考虑因素。本文将重点说明其对带宽、直流精度、噪声和失真的影响。
带宽扩展
与配置为相同增益的单个放大器相比,实现复合放大器的主要优点之一是带宽更宽。
参考图3和图4,假设我们有两个独立的放大器,每个放大器的增益带宽积(GBWP)为100 MHz。将它们组合成一个复合配置,整个组合的有效GBWP将会增加。在单位增益时,复合放大器的-3 dB带宽要高出约27%,尽管有少量峰化。在更高增益下,这种优势变得越发明显。
图3. 单位增益复合放大器
图4. 单位增益时的-3 dB带宽改善情况
图5显示了增益为10的复合放大器。请注意,复合增益通过R1和R2设置为10。AMP2周围的增益设置为约3.16,迫使AMP1的有效增益与此相同。在两个放大器之间平均分配增益可以产生最大可能的带宽。
图5. 复合放大器的增益配置为10
图6比较了增益为10的单个放大器的频率响应与配置为同样增益的复合放大器的频率响应。在这种情况下,复合放大器的-3 dB 带宽高出约300%。这怎么可能?
图6. 增益为10时的-3 dB带宽改善情况
有关具体示例,请参阅图7和图8。我们要求系统增益为40 dB,使用两个相同的放大器,每个放大器的开环增益为80 dB,GBWP为100 MHz。
图7. 分配增益以获得最大带宽
图8. 单个放大器的预期响应
为使组合实现最高可能带宽,我们将在两个放大器之间平均分配所需的系统增益,每个放大器需提高20 dB的增益。因此,将AMP2的闭环增益设置为20 dB会迫使AMP1的有效闭环增益同样达到20dB。采用这种增益配置,两个放大器在开环曲线上的工作点均低于任何一个在40dB增益时的工作点。因此,与同样增益的单个放大器解决方案相比,复合放大器在增益为40 dB时将具有更高的带宽。
虽然看似相对简单且易于实现,但在设计复合放大器时应采取适当的措施来获得尽可能高的带宽,同时不能牺牲组合的稳定性。在实际应用中,放大器有非理想特性,而且可能不完全相同,这就要求使用适当的增益配置来保持稳定性。另外应注意,复合增益将以-40 dB/十倍频程的速度滚降,因此在两级之间分配增益时必须小心。
在某些情况下,平均分配增益可能无法做到。就此而言,要在两个放大器之间均等分配增益,AMP2的GBWP必须始终大于或等于AMP1的GBWP,否则将导致峰化,并且可能导致电路不稳定。在AMP1 GBWP必须大于AMP2 GBWP的情况下,在两个放大器之间重新分配增益通常可以校正不稳定性。在这种情况下,降低 AMP2的增益会导致AMP1的有效增益提高。结果是AMP1闭环带宽降低,因为其在开环曲线上的工作点提高,而AMP2闭环带宽提高,因为其在开环曲线上的工作点降低。如果充分应用AMP1 的减速和AMP2的加速,复合放大器的稳定性就会恢复。
本文选用 AD8397 作为输出级(AMP2),与各种精度的放大器AMP1 连接以展示复合放大器的优势。AD8397是一款高输出电流放大器,可提供310 mA电流。
表1. 不同放大器组合的带宽扩展,增益为10,VOUT = 10 Vp-p VOUT = 10 Vp-p
AD8397
-
双路运算放大器
-
电压反馈
-
宽电源电压范围:3 V至24 V
-
轨到轨输出
输出摆幅达到供电轨0.5 V范围内
-
高线性输出电流
310 mA(峰值,32 Ω,±12 V电源),无杂散动态范围(SFDR):-80 dBc
-
低噪声
电压噪声密度:4.5 nV/√Hz (100 kHz)
电流噪声密度:1.5 pA/√Hz (100 kHz)
-
高速
-3 dB带宽:69 MHz (G = 1)
压摆率:53 V/µs (RLOAD = 25 Ω)
保持直流精度
图9. 运算放大器反馈环路
在典型运算放大器电路中,输出的一部分会被反馈到反相输入。输出端存在的误差(环路中产生)乘以反馈因子(β),然后予以扣除。这有助于保持输出相对于输入乘以闭环增益(A)的保真度。
图10. 复合放大器反馈环路
对于复合放大器,放大器A2有自己的反馈环路,但A2及其反馈环路都在A1的较大反馈环路内。输出现在包含A2引起的较大误差,这些误差被反馈到A1并进行校正。较大的校正信号导致A1的精度得以保留。
在图11所示电路和图12所示结果中可以清楚地看到该复合反馈环路的影响。图11显示了一个由两个理想运算放大器组成的复合放大器。复合增益为100,AMP2增益设置为5。VOS1表示AMP1的50μV失调电压,而 VOS2 表示AMP2的可变失调电压。图12显示,当 VOS2 从0 mV扫描到100 mV时,输出失调不受AMP2贡献的误差(失调)幅度的影响。相反,输出失调仅与AMP1的误差(50μV乘以复合增益100)成比例,并且无论 VOS2的值是多少,它都保持在5 mV。如果没有复合环路,我们预计输出误差会高达500 mV。
图11. 失调误差贡献
图12. 复合输出失调与 VOS2的关系
表2. 增益为100时的输出失调电压
噪声和失真
复合放大器的输出噪声和谐波失真以与直流误差类似的方式进行校正,但对于交流参数,两级的带宽也会起作用。我们将举一个例子,使用输出噪声来说明这一点;同时应理解,失真消除方式大致相同。
参考图13所示电路,只要第一级(AMP1)有足够的带宽,它就会校正第二级(AMP2)的较大噪声。当AMP1的带宽开始耗尽时,来自AMP2的噪声将开始占主导地位。但是,如果AMP1带宽过多,并且频率响应中存在峰化,那么在相同频率处将产生噪声峰值。
图13. 复合放大器的噪声源
对于此例,图13中的电阻R5和R6分别代表AMP1和AMP2的固有噪声源。图14的上部曲线显示了各种AMP1带宽的频率响应以及单一固定带宽的AMP2的频率响应。回忆增益分配部分,若复合增益为100 (40 dB),AMP2增益为5 (14 dB),则AMP1的有效增益将为 20 (26 dB),如此处所示。
下部曲线显示了每种情况的宽带输出噪声密度。在低频时,输出噪声密度以AMP1为主(1 nV/√HZ乘以100的复合增益等于100 nV/√HZ)。只要AMP1有足够的带宽来补偿AMP2,这种情况就会持续下去。
若AMP1带宽小于AMP2带宽,当AMP1带宽开始滚降时,噪声密度将开始由AMP2主导。这可以在图14的两条迹线中看到,噪声上升至200 nV/√HZ(40 nV/√HZ乘以AMP2的增益5)。最后,若AMP1具有比AMP2大得多的带宽,导致频率响应出现峰化,则复合放大器将在相同频率处呈现噪声峰值,如图14所示。由于频率响应峰化引起过大增益,噪声峰值的幅度也会更高。
图14. 噪声性能与第一级带宽的关系
表3和表4分别显示了使用不同精密放大器作为第一级与AD8397形成复合放大器时的有效噪声降低情况和THD n改善情况。
表3. 使用不同前端放大器的降噪情况,有效增益 = 100, f = 1 kHz
表4. 使用不同前端放大器的THD n比较,有效增益 = 10, f = 1 kHz, ILOAD = 200 mA
系统级应用
图15. DAC输出驱动器的应用电路
在此示例中,DAC输出缓冲器应用的目标是为低阻抗探针提供10 V p-p的输出,电流为500 mA p-p,要求低噪声、低失真、出色的直流精度以及尽可能高的带宽。DAC输出的4 mA至20 mA电流将通过TIA转换为电压,然后转换为复合放大器的输入以进一 步放大。输出端的AD8397可满足输出要求。AD8397是一款轨到轨、高输出电流放大器,能够提供所需的输出电流。
AMP1可以是任何具有配置所需直流精度的精密放大器。在此应用中,各种前端精密放大器都能与AD8397(以及其他高输出电流放大器)配合使用,以实现应用所需的出色直流精度和高输出驱动能力。
图16. AD8599和AD8397复合放大器的 VOUT 和 IOUT
表5. AD8599 AD8397复合放大器规格
此配置不限于AD8397和 AD8599, 其他放大器组合也是可行的,只要满足输出驱动要求并提供出色的直流精度即可。表6和表7中的放大器也适合此应用。
表6. 具有高输出电流驱动能力的放大器
表7. 精密前端放大器
结论
两个放大器结合成复合放大器,可实现每个放大器的最佳规格,同时弥补各自的局限性。具有高输出驱动能力的放大器与精密前端放大器相结合,可为非常棘手的应用提供解决方案。设计时务必考虑稳定性、噪声峰化、带宽和压摆率,以获得最佳性能。有许多可能的方案来满足各种应用需求。正确的实施和组合可以实现应用的恰当平衡。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。
关键字:
阿维塔
塞力斯
华为
加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...
关键字:
AWS
AN
BSP
数字化
伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...
关键字:
汽车
人工智能
智能驱动
BSP
北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...
关键字:
亚马逊
解密
控制平面
BSP
8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。
关键字:
腾讯
编码器
CPU
8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。
关键字:
华为
12nm
EDA
半导体
8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。
关键字:
华为
12nm
手机
卫星通信
要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...
关键字:
通信
BSP
电信运营商
数字经济
北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...
关键字:
VI
传输协议
音频
BSP
北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...
关键字:
BSP
信息技术
山海路引 岚悦新程 三亚2024年8月27日 /美通社/ -- 近日,海南地区六家凯悦系酒店与中国高端新能源车企岚图汽车(VOYAH)正式达成战略合作协议。这一合作标志着两大品牌在高端出行体验和环保理念上的深度融合,将...
关键字:
新能源
BSP
PLAYER
ASIA
上海2024年8月28日 /美通社/ -- 8月26日至8月28日,AHN LAN安岚与股神巴菲特的孙女妮可•巴菲特共同开启了一场自然和艺术的疗愈之旅。 妮可·巴菲特在疗愈之旅活动现场合影 ...
关键字:
MIDDOT
BSP
LAN
SPI
8月29日消息,近日,华为董事、质量流程IT总裁陶景文在中国国际大数据产业博览会开幕式上表示,中国科技企业不应怕美国对其封锁。
关键字:
华为
12nm
EDA
半导体
上海2024年8月26日 /美通社/ -- 近日,全球领先的消费者研究与零售监测公司尼尔森IQ(NielsenIQ)迎来进入中国市场四十周年的重要里程碑,正式翻开在华发展新篇章。自改革开放以来,中国市场不断展现出前所未有...
关键字:
BSP
NI
SE
TRACE
上海2024年8月26日 /美通社/ -- 第二十二届跨盈年度B2B营销高管峰会(CC2025)将于2025年1月15-17日在上海举办,本次峰会早鸟票注册通道开启,截止时间10月11日。 了解更多会议信息:cc.co...
关键字:
BSP
COM
AI
INDEX
上海2024年8月26日 /美通社/ -- 今日,高端全合成润滑油品牌美孚1号携手品牌体验官周冠宇,开启全新旅程,助力广大车主通过驾驶去探索更广阔的世界。在全新发布的品牌视频中,周冠宇及不同背景的消费者表达了对驾驶的热爱...
关键字:
BSP
汽车制造
此次发布标志着Cision首次为亚太市场量身定制全方位的媒体监测服务。 芝加哥2024年8月27日 /美通社/ -- 消费者和媒体情报、互动及传播解决方案的全球领导者Cis...
关键字:
CIS
IO
SI
BSP
上海2024年8月27日 /美通社/ -- 近来,具有强大学习、理解和多模态处理能力的大模型迅猛发展,正在给人类的生产、生活带来革命性的变化。在这一变革浪潮中,物联网成为了大模型技术发挥作用的重要阵地。 作为全球领先的...
关键字:
模型
移远通信
BSP
高通
北京2024年8月27日 /美通社/ -- 高途教育科技公司(纽约证券交易所股票代码:GOTU)("高途"或"公司"),一家技术驱动的在线直播大班培训机构,今日发布截至2024年6月30日第二季度未经审计财务报告。 2...
关键字:
BSP
电话会议
COM
TE
8月26日消息,华为公司最近正式启动了“华为AI百校计划”,向国内高校提供基于昇腾云服务的AI计算资源。
关键字:
华为
12nm
EDA
半导体