当前位置:首页 > 公众号精选 > 全栈芯片工程师
[导读]【剖析】傅里叶变换、拉普拉斯变换、Z变换接着上文聊,我们知道在s域上,虚轴上不同的点对应不同的频率,而z域上单位圆与s域虚轴对应,可见,z域单位圆上不同的点,代表了不同的频率。对于z域的传递函数的零极点,也有和s域零极点类似的结论:规律1:如果在单位圆上有零点,则在零点所对应的频...


【剖析】傅里叶变换拉普拉斯变换、Z变换



接着上文聊,我们知道在s域上,虚轴上不同的点对应不同的频率,而z域上单位圆与s域虚轴对应,可见,z域单位圆上不同的点,代表了不同的频率。




对于z域的传递函数的零极点,也有和s域零极点类似的结论:


  • 规律1:如果在单位圆上有零点,则在零点所对应的频率上幅值响应为零;


  • 规律2:对于不在单位圆上的零点,在单位圆上离零点最近的点对应的频率上幅值响应最小。


  • 规律3:对于在单位圆内部的极点,在单位圆上离极点最近的点对应的频率上幅值响应最大。


  • 规律4:如果极点和零点重合,对系统的频率响应没有影响




单位圆逆时针从0 -> -0.5fs -> 0?



细心的朋友发现没?上图单位圆为何逆时针是从0->0.5fs,然后又从-0.5fs到0?耐心等待下文的解释。



很久以前,我们需要处理的信号只有模拟信号。但是现在我们步入了新时代——数字时代,大部分信号都变成数字式了,典型的数字信号长成这个样子:





把模拟信号变成数字信号的过程称之为采样。




采样频率定义为:



采样是一个有规律的周期性过程,也就说,采样会引入额外的谐波分量。举个简单的例子,现在有一个余弦信号,频率为 8Hz,表达式为:



假设我们对这个余弦信号进行采样,采样频率fs为20MHz,采样结果如下图,其中虚线为原始信号,菱形为采样点的数值。




采样到的离散的点,我们用曲线拟合的方式即可恢复模拟信号,但是!



拟合出来的曲线可能是12Hz、28Hz,32Hz,48Hz,…,也就是说采样之后信号频谱有很多频率,而不单单是原信号频率8Hz。



为什么?怎么办?




样定





两个信号在时域相乘,在频域相当于卷积;在时域卷积,在频响相当于相乘。



狄拉克梳状函数(Dirac comb)


狄拉克函数定义为:




离散信号,其实就是连续信号f(t)与狄拉克梳状函数(也就是采样函数)的相乘,这就是采样。这是时域行为,在频域就是卷积!



狄拉克梳状函数无论在时域还是在频域,其形貌都是一系列的脉冲信号,感兴趣的朋友可以参考这个链接查看推导:https://zhuanlan.zhihu.com/p/45114376



举个例子:


对于余弦函数而言,比如:w=2πf, f=8Hz



傅里叶变换包含两个频率分量,分别是8Hz以及-8Hz,如下图:



采样频率fs为20Hz:




采样后的信号的频谱被周期延拓了,延拓的周期就是20Hz,也就是采样频率。




上文说了,对8Hz的余弦函数采样得到离散点,拟合出来的曲线可能是12Hz、28Hz,32Hz,48Hz,也就是说采样之后信号频谱有很多频率,而不单单是原信号频率8Hz。




现在明白了吧,12Hz是-8Hz平移一个采样周期(20Hz)得来的,28Hz是8Hz平移一个采样周期,32Hz是-8Hz平移两个采样周期,48Hz是8Hz平移两个采样周期。



得到了如下结论:对一个连续信号的采样,采样后的频谱相当于将采样前的频谱进行了延拓,延拓的周期就是采样频率。




奈奎斯特采样定律假设一个信号的频谱如下:



频谱中最大的频率为fmax ,用一个周期为fs的狄拉克梳状函数进行采样后的频谱为原频谱的周期延拓,示意图如下:



采样之后的频谱是一个周期函数,我们把[0, 1/2*fs]称为主值区间:







这就解释了上文的问题:细心的朋友发现没?上图单位圆为何逆时针是从0->0.5fs,然后又从-0.5fs到0?



接着思考下,如果采用频率小于信号最大频率的2倍:




会发生原始频谱信号经过周期延拓后会有一部分重叠:





对于连续信号的进行抽样离散的话,必须保证采样频率是原连续信号最大频率分量的2倍频率以上,否则信号就难以复原。这就是采样定理,又叫奈奎斯特采样定理或香农采样定理。




零、极点影响频率响应




  • 例子1:



对于这个系统,在z=0有一个极点,在z=1时有一个零点。零、极点分布如下:





其中o表示零点,x表示极点。从z=1也就是单位圆上角度为零(也是频率为零)的点开始,此处z=1有一个零点,根据规律1,显然在频率为零时系统响应为零。



顺着单位圆沿逆时针方向旋转,我们离零点越来越远,零点的影响也越来越小,因此幅值响应会逐渐增大。当我们到达z=-1 ,也就是频率为1/2fs时,此时离零点最远,因此响应会达到一个最大值,当频率继续增大时,由于离零点又开始接近了,幅值响应又开始变小。



极点正好位于圆心位置,也就是说所有频率段离极点的距离都一样,因此可以认为都没影响。



用freqz函数将系统的频响画出来,如下图,这个系统本质上是一个高通滤波器。




这个系统转换到时域:




是不是很惊喜,这本质就是一个差分,低频信号被过滤,高频信号通过。




  • 例子2:




零极点图如下



零点跑到了1/2*fs处,因此,系统的频响会先减小,到1/2*fs处达到最小值,然后又增加,具体频响如下图,这本质上是一个低通滤波器。



时域的表达式为:



这本质就是一个离散求和,对应连续系统的积分,是一个低通滤波器。




低通、高通滤波有了,带阻呢?



假如我们在0到1/2fs之间放置一个零点,那会不会是一个带阻滤波器呢?比如我们想在频率在3/8fs这个点的系统频率响应为零。



[0, 1/2*fs]称为主值区间[-1/2*fs,0]为对称区间,因此,3/8fs处对应的相位角为3π/4,同时,-3π/4也是零点相位角。因此,传导函数为:



展开可得:




感兴趣的朋友继续推导下带通滤波器的设计,后面接着聊FIR、IIR滤波。









本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭