隧道机电设备检测评价方法
扫描二维码
随时随地手机看文章
引言
机电设备在正常使用一定年限后会出现性能明显下降或不稳定现象,由于公路隧道机电系统设备多数在外场7X24小时不间断运行,更易导致机电系统硬件设备老化、性能下降,因此对隧道机电设备运行情况的科学评价是公路运管部门需要研究的重点课题。定期对机电设备检测可以了解机电设备的运行状况,通过设备维护保养等方法可以极大地延长机电设备的使用寿命,保证隧道机电设备的正常工作能力,从而最大限度地保障公路的行车安全与道路畅通。
不仅如此,隧道机电设备运营检测还是隧道机电系统网络结构及功能优化升级与扩容的需要。在隧道机电系统建设的初期,侧重于满足基本运管需求,建设规模较小;当隧道机电系统达到一定规模以后,需要在原有的系统上增加或调换设备,如果对机电设备运行情况不了解,则会导致机电系统资源规划失调,给机电系统的稳定、高质量的运行带来一定的隐患。
1检测评价方法
1.1研究基础
我国公路隧道建设事业起步较晚,但我国公路交通工程方面的工作经过近二十年的研究和实践,已积累了丰富的经验,交通部先后组织编写、制定、完善了大量的标准、规范和技术条件。这些标准规范对确定我国公路交通工程及沿线设施的设置规模、制式和方式,提高我国交通工程设施的设计水平、施工水平和产品开发都起到了极大的推动作用,产生了极大的社会经济效益。但从这些标准、规范所涉及的领域和涵盖的范围来看,还不够全面和完善。目前已颁布实施的国家、行业标准、规范和正组织编写的标准、规范,其内容主要涉及交通工程的规划、设计、施工及相关机电产品的技术开发和研制。在交通工程项目所包含的交通安全设施、收费系统、通信系统和监控系统四大部分中,除关于交通安全设施部分的质量检验标准、规范较为全面和完善外,有关收费、通信、监控系统方面的工程质量检验标准、规范则几乎是空白。不仅如此,国内隧道检测研究相关论文也大多数侧重于土建方面及交工/竣工检测方面,对于隧道机电运营检测涉猎较少。
在国外的有关资料中,也未发现成套的交通工程机电系统工程质量检验评定标准。只是在美国运输部联邦公路总署《交通控制系统手册》、日本道路公团《日本高等级公路设计规范》、美国运输工程研究所《交通信号设计手册》等文献中发现有少量的描述。
在隧道检测实践方面,国内一部分隧道机电设备检测主要依靠交通机电工程检测,包括:机电产品企业生产能力的检验、出厂验收、工程施工现场检验、交工验收检测和竣工验收检测等各项方法。隧道运营检测采用设备运营情况作为评价指标,即该设备能进行正常工作即为优,不能正常工作即为差。这种评价方法在以下几个方面还需提升:
应能定量化描述设备工作能力;
应能动态地描述设备在不同工作时间跨度下的工作
能力,即刚投入运行的设备与数年连续工作的设备评价结果不同;
(3)现有评价指标为检测时间点的静态结果,没有涉及设备将来工作能力,不能全面掌握设备运行情况。
因此,当评判设备工作能力时,不仅需要考虑静态检测结构,还需考虑设备在未来一段时间之内的工作能力变化趋势。若设备此时工作能力为优,则需要根据未来工作年限对结果再进行修正,使评价指标可以描述机电设备在一定的运行年限中的运行状况。
下面对设备运行功能特性及“浴盆曲线”进行分析,结合作者从事隧道运营检测及评定的工作实践,对公路隧道机电系统检测的质量评定方法进行分析和讨论,以建立一种科学的公路隧道机电设备检测及评定方法。
1.2评价原理
在文章中,将隧道机电设备评价进行阶段性划分,第一步是对隧道机电设备运行工作情况进行分析,第二步是对隧道机电设备运行情况进行修正优化。本文将隧道机电设备在某一点的工作能力称为“工作状态”,对机电设备工作能力的修正量称为“工作能力修正参数”。这两类参量中,“工作状态”指的是隧道机电设备在当前的工作情况,称为现性(now);“工作能力修正参数”是隧道机电设备在将来正常运行的能力,称为势性(future)。这两类指标根据隧道机电设备的性能-时间曲线进行具现化,达到评价隧道机电设备功能特性的目标。
评价机电设备功能特性即评价机电设备能否正常工作,若能正常工作则代表其无功能故障,因此要研究的功能特性,首先应从机电产品故障率入手。
图1显示了机电设备故障率与时间对应的寿命曲线,又称为“浴盆曲线”。
从图1中可以看出,机电寿命特性曲线分为三部分:早期故障期、T1偶发故障期、T2耗损故障期。
To早期故障期:机电设备从投入使用到晚时刻为止,该阶段特点是开始时故障率较高,但随着运转时间的增加,故障率又很快下降,进入故障恒定阶段;
T偶发故障期:机电设备从t1时刻运转到t2时刻这一阶段的故障率最低,而且故障恒定。一般情况下这一阶段不会发生故障或由于某些原因发生少量故障。在这段时间内,可能由于零件的强度降低及使用载荷的增高等情形造成超负荷损坏,因此该阶段应合理使用、加强维修保养,延长使用寿命;
T2耗损故障期:当机电设备使用到3时刻后,故障率再度升高,这是由于零件磨损、材料疲劳等过程引起的。在此阶段为了保证机电设备的正常运行,应该及时维修或更换。
据图1的分析可以得出隧道机电设备功能特性与时间的关系曲线如图2所示。该曲线可根据机电设备的运行情况分为磨合、稳定、老化3个时间段:磨合期时间长度较短,不作为运营检测考虑范围;稳定期设备运行状态良好;老化期设备故障增多,工作能力急剧降低。在老化点之后,设备无法完成正常功能,此时其工作状态为差。在机电设备评价方法中,“工作能力修正参数”即是在设备在能完成正常工作的前提下(稳定期、老化期时间段内),机电设备的修正参量。
在图2中,磨合期虽然存在早期故障,但磨合阶段是由于设备运行逐渐适应系统而产生的,因此,认为设备损耗增加,但其功能会有略微提升。
影响机电设备功能的因素是现性,影响将来可用性的因素主要为势性,两者的综合即是设备的可用性。稳定期内设备可用性较高;老化期内影响可用性的因素主要为现性,且当现性取最大值时(机电设备报废时),可用性为最小。
1.3评价方法
为了评价方便,可将现性、势性进行简化,并用三角合成法将其与可用性进行联系。具体方法为:将机电设备开始运行点设为原点,将其工作状态分为时间维和状态维两个维度,时间维代表了其工作延续的时间、状态维代表其工作状态衰减。机电设备评价的三角合成法如图3所示。
如图3所示可知:现性直线角度的大小即代表机电设备运行特性,在稳定区间内,功能恒定;在老化区间内,角度越大功能特性越差;势性直线角度的大小即代表机电设备功能完成能力特性,单位时间内角度变化越大,功能特性老化程度越严重;合成直线角度的大小即代表一段时间内机电设备功能特性,稳定性区间内,角度越大则可用时间越长,功能特性越好;在老化区间内,角度越大功能特性越差。
但应注意的是:现性终点仍为检测时,机电设备的运行状态需要根据其运行时间确定,取点时应避开磨合期;第二,势性终点需根据隧道环境及设备运行等实际情况确定机电设备继续工作时间,超过报废点的,认为其不能完成工作任务;第三,为了保证在实际运用中不出现两条合成直线角度相同而引起的一值多义现象(如图4所示,合成直线C角度相同),可将坐标轴进行平移,平移后的起始点应在磨合期和稳定运行期结合点处(即忽略磨合期对隧道机电设备的影响),图5所示是优化后的三角合成法。
优化后,根据分析可知,现性直线角度随着时间增加,先稳定处于0°(稳定期内),后增加至极限值(报废点处),即加<如时,Ml<0A2;势性直线特性根据现性直线的终点及继续工作时间长短而定,当继续工作时间一定时,势性直线角度随着现性直线终点的变化而逐渐增加,即加<如时,編<0B2;合成直线随着现性直线角度和势性直线角度的增加而增加。
1.4评价指标等级划分
以该类方法得到的机电设备评价指标可根据机电设备功能进行分级,明确各不同状态下机电设备的运行状态。考虑到在报废点之后,机电设备已不能完成正常工作,因此,修正曲线上报废点可作为判定机电设备功能的辅助点。图6所示是现性直线变化图。
现性直线从A到A'时,角度逐渐增大,机电设备性能逐渐减小,设最大张角为α。则会出现如图7所示的势性直线变化图。
在一定时长内,势性直线的角度随着现性直线长度的增加而增加,从B到B'角度逐渐增大,机电设备可用能力逐渐减小,角度从β(设为最小张角)逐渐增大,角度极限值为功能特性曲线在报废点处斜率的反正切值β'(设为最大张角)。图8所示是可用性直线变化曲线。
设备可用性直线从C到C'变化时,角度逐渐增大,机电设备性能逐渐降低,设最大张角为γ,则可以得到如表1所列的机电设备性能分级表。
由表1可知,当情况1出现时,设备运行优良;当4、6、10、12等情况出现时,机电设备运行良好;当出现13、14、15情况时,机电设备运行能力差。由于机电设备评价时采用的均为单值增加的三角函数,因此还可对角度进行归一化处理,以百分制定量评价机电设备的运行状况。考虑到数据的简易型及易用性,因此可将功能衰减度进行适当修正,使得归一化值计算及使用方便。
2方法特点
该方法具有以下特点:
(1)现性和势性的定义是符合机电设备性能曲线的,矢量化处理在一定程度上描述了机电设备运行发展的趋势,符合实际情况;
(2)采用三角合成法而不是双因子平方和等计算方式主要是考虑到现性和势性并不是相互独立的,机电设备当前的工作状态及已经工作的时间长度对其之后的工作能力有着较大影响;
(3)将以往机电设备性能的经验性简单定性评价方法进行优化,本方法基于大量统计数据汇集而成的浴盆曲线进行分析,数据支持有力;
(4)该方法可进行定性评价及定量评价,方式灵活;
(5)根据大样本分析得到的机电设备功能特性曲线在一定程度上代表了隧道机电设备运营养护情况,因此用此种方法分析时,可以不必考虑隧道机电设备运营养护情况下曲线的再次修正;
(6)本方法不仅可用于隧道机电设备检测,还可延伸拓展至其他机电设备检测。
本方法的不足之处有两点:一是本方法立足于隧道机电设备运营评价,因此,在统计学的大样本分析中是成立的,但由于功能特性曲线是大量机电设备长时间实验得出的统计性结果,单个机电设备运行情况可能与其略有差异,这样就无法精确预测某一特定机电设备工作的能力;其二,由于同一设备不同厂家生产的产品功能特性不尽相同,因此导致各类产品的浴盆曲线也不相同,但考虑到在同样的安装环境与安装要求下,同一类设备的功能特性区别不大,因此在精度要求不太高时,可以利用同一浴盆曲线对同类设备中的不同产品进行比较。
3实例分析
在某隧道的29个风机中,取样12个进行检查,风机使用年限为10年,已经使用了5年,预期再使用4年。则可得到如图9所示的设备性能曲线图。
考虑到纵轴跨度设置过大时不适合计算及数据使用,因此可对功能衰减值进行5级划分,报废时纵轴坐标为5。由图可知A直线角度为0°,B直线角度为arctan0.9375=43.15。,C直线角度为arctan5/12=22.61°。由设备分级表可以看出,线性为优,势性为良,可用性直线则代表在预期的9年之内,设备的功能特性为良。
若要进行归一化处理,则需对极限值进行划分,考虑到检测目的主要是设备此时的功能特性及在预期时间范围内的可用性,因此,在这个例子中,仅需了解现性及可用性即可。表2给出了隧道机电设备检测值的归一化表。
该结果表明,该隧道风机运行情况优良,在预期的9年之内,设备功能特性良好,但是已接近报废边缘,建议根据设备运行情况及时养护或更换设备。
4结语
本文从机电设备运行实际情况出发、基于大样本功能特性曲线对机电设备的运行状况及工作能力进行分析,并提出了基于现性和势性的三角合成法及相应的评价指标作为机电设备检测方法。本方法在判定设备评价方面有其优点也有其局限性,但在现今的机电设备检测评价环境下,还是具有一定的实际意义的。在实际工程中也可与机电设备联网检测技术等方法联合使用,较为全面准确地评判机电设备。基于现有成果,在下一步工作中,还需要完善评价方法、重构评价体系,对评价方法进行深一步的分析和优化。
20211120_6198e066ec114__隧道机电设备检测评价方法