神经网络加速器芯片让汽车学会自主思考
扫描二维码
随时随地手机看文章
汽车正在变得越来越智能,但是如果汽车行业要实现完全自动驾驶的目标,他们还有很长的路要走。尽管业界还在讨论实现全自动化所需的理想技术组合,但是有一点是明确的,那就是人工智能,尤其是神经网络将发挥重要作用。
神经网络
神经网络的作用是执行对于传统视觉或模式识别系统来说具有挑战性的任务。通过使每个神经网络各自不同,并针对特定任务进行设计,它可以更高效、更精确地执行任务。
所有神经网络的组织模式都是在多个层面上多次处理数据。因此,神经网络可以在不同的输入模式下运行十到二十次,而不是用一组特定的参数只运行一次操作。这个想法是,通过所有这些不同的路径,选择的数量就会增加。当到了需要做出决策的时候,它已经从输入中提取了所有的信息。
在路标识别的示例中,第一层可能正在寻找一个标识的角形状,然后是颜色等各个步骤执行下去,直到它可以非常确信地说这是一个路标并说明其含义。这样做的好处在于无需对每一个步骤都进行编程,神经网络将会自己完成,并且随着时间的推移而不断学习。该算法知道它需要识别的内容,并将尝试不同的方法,直到实现目标,并在过程中不断学习。一旦神经网络在经过培训之后,它便可以在实际应用中发挥作用。这意味着工程师不必花费数小时来微调复杂的算法,他们只需向神经网络展示它需要发现的内容并让其自学完成。
这些技术已经在车辆中被广泛用于目标检测、分类和分析,而驾驶员监测、访问控制以及语音和手势识别也可以利用不同类型的神经网络。此外,将传统视觉与神经网络相结合的人工智能方法,可用于行人路径分析和环绕视图等应用场景,它将同时依赖于图形处理器(GPU)和神经网络加速器(NNA)。
在从传感器到电子控制单元(ECU)整个链路中也可以使用神经网络,在预处理、中间处理和后处理中使用的各种技术将人工智能引入了其中。
此外,车联网(V2X)技术正在开发中,该技术将主要使用自动驾驶汽车作为传感载体,为各种智慧城市和智慧交通场景提供数据和信息。同样,这些进展将依赖于采用GPU和NNA的方法实现人工智能,以支持来自越来越大的输入集的各种分析和计算。
传感器融合
自动驾驶和高度自动化的车辆将严重依赖各种类型的传感器,包括摄像头、热成像、雷达、激光雷达(LiDAR)等。所有这些传感器传出的信号都需要进行解读和融合,以便全面了解车辆内部和外部发生的情况。
传感器融合对于自动驾驶至关重要,它将涉及到GPU和神经网络以及机器学习和人工智能的结合。
车辆内部传感器融合的一个很好的示例是驾驶员监测。在当今的车辆中,各种各样的传感器都能够检测到驾驶员是否注意力不集中。神经网络可以分析拍摄到的驾驶员图像,以判断他或她是否在睡觉、处于疲倦状态、注意力不集中,甚至通过移动设备讲话或发信息。这对于早期的自动驾驶车辆来说是至关重要的信息,因为它可能需要驾驶员在某些时候重新控制车辆,因为汽车需要知道驾驶员是否处于合适的状态才能这样做。