能量采集系统环境能量转换器基础知识
扫描二维码
随时随地手机看文章
表1能量采集器的典型输出功率能量采集源环境位置采集功率采集器考虑因素电路考虑因素光室内10 µW/cm2光照强度与波长低功效、MPPT、单节电池工作户外10 mW/cm2机械振动压电人4 µW/cm2振动大小与谐振频率AC/DC 转换、阻抗匹配机器250 µW/cm2机械振动电磁人50 µW/cm3机器2 mW/cm3热人25 µW/cm2热梯度,热通量低压启动、亚200 mV 输入高效率机器10 mW/cm2无线电波背景0.1 µW/cm2到发射源距离和天线谐振高效率低压整流定向1 mW/cm2表1 显示了来自不同能量转换器的典型功率级别以及采集器的重要考虑因素。在一般情况下,大多数采集器都可以提供 ~10-50 µW/cm2左右的平均功率。所获功率的大小与采集器面积有关,并严重依赖于采集器的可用空间。利用一个太阳能电池例子,我们可以描述出采集器的一些特性。太阳能电池可以建模为一个与二极管并联的电流源,如图1 所示。分流电阻对漏电建模,而串联电阻对接触电池电阻建模。图1光伏电池及其特性曲线的电气模型当光线照在太阳能电池上时,电池产生一个流过输出端的电流 IPH。电池为开路时,该电流在输出端形成电压 VOC。在开路和短路两种极端情况之间,电池产生功率。图1 中,红色曲线表示太阳能电池的电流对比电压特性。照度增加,短路电流增加,并对电池开路电压产生微弱影响。从太阳能电池获得的功率在某个特定的电压下达到最大,然后在该电压任意一端逐渐下降。这就是电池的最大功率点。它与入射光及其他环境因素有关,例如:温度等。由于其高阻抗特性,其他转换器都具有类似的最大功率点 (MPP) 特性。因此,如何选择一种电源管理解决方案,让其能够工作在 MPP 下,是我们需要考虑一个的关键因素。热电发电机 (TEG) 用于采集环境热能,并根据塞贝克效应 Seebeck effect 「1」产生电压。热采集器的基本结构单元是热电耦。这种热电耦由一个 n 型材料组成,其与一个 p 型材料串联。当这种材料出现温差时,热开始从高温面流向低温面。热能使自由电子和空穴移动,并形成电势。常用热采集器由 p 和 n 掺杂碲化铋组成,原因是其具有优异的热属性。这种材料的一个 p-n 脚可在热冷面之间产生约 0.2 mV/K 温差。图2热电堆阵列和简单的TEG 电气模型为了升高输出电压并获得更多的功率(参见图2),我们将许多脚电串联和热并联,以形成一个能够产生约 25 mV/K 温差的热电堆。这种热能采集器可以建模为一个同电阻串联的电压源,其开路电压与温度差成比例关系。电阻来自于金属互连和芯块边缘的电阻。由此模型,我们可以很容易地知道,要想提取最大功能,就需要对阻抗进行控制,以匹配来自发电机的负载。热能采集器的一个重要方面是,它们周围需要一个正确的热流系统,以保持热通量以及良好的温差。如果 TEG 两面均允许达到热平衡,则电功率输出达到零。采集环境机械能的一种普遍方法是利用压电组件。图3 所示压电材料承受的输入振动,在器件中引起机械应变,之后转换为电荷。PE采集器的等效电路可以表示为一个机械弹簧质量系统,其与一个电气域联接。仔细观察器件的谐振频率,我们可以将整个电路变换为电气域[2]。这样,当受到正弦振动激励时,便可将压电组件建模为一个正弦电流源,其与电容 CP和电阻 RP并联。图3某个质量及其电气建模加载的压电组件另外,我们还可以利用电磁采集器来采集机械能,它通过磁场来利用动能产生电能。为了最大化功率输出,需要对采集器进行微调,让其达到应用环境的最佳谐振频率,并对整流阻抗进行调节以使其匹配2。相比压电采集器,这些器件的调节更加简单,很容易获得理想的功率输出。但是,这两种机械能转换器本身都具有谐振,并且工作频段较窄。结论总之,理解能量转换器的特性非常重要。只有理解了它们的特性,才能优化能量转换,制造出一种可行的能量采集系统。能量转换器电源管理的一些重要考虑因素包括能量源属性、能量转换器特性和电源管理性能。匹配电源管理解决方案以从转换器中获得最大输出功率并将其有效存储,要求我们深入地理解上述重要参数。它可以帮助我们开发出拥有最佳性能的能量采集系统,更好地服务于目标应用。参考文献1、塞贝克效应:http://en.wikipedia.org/wiki/Thermoelectric_effect2、《低功耗应用能量处理电路》,作者:Y. K. Ramadass,刊发于 2009 年麻省理工学院博士论文。
深入阅读:
MIT三源能量采集控制IC将多来源能量转换为稳定电源输出
有源标签,节点的能量采集
立即加入德州仪器技术社区