当前位置:首页 > 消费电子 > 消费电子
[导读] 1 引言现代电子测量中,对测量精度有着越来越高的要求,同时,由于野外电池供电的原因,对整体电路的功耗也有着高要求。比如,在差压式流量测量/计量中,压力传感器给出的

1 引言

现代电子测量中,对测量精度有着越来越高的要求,同时,由于野外电池供电的原因,对整体电路的功耗也有着高要求。比如,在差压式流量测量/计量中,压力传感器给出的信号十分微弱,这对直流放大器和ADC电路提出了很高的要求。传统的精密数据转换和系统稳定性方案不能兼备低噪声、低漂移和低功耗特性,往往不得不牺牲某些性能。AD7794针对工业测量领域的这种特殊而义普遍的需求,采用了一种结合斩波放大电路(抑制漂移)、乏一AADC(提高精度和抑制噪声)和低功耗的复合结构,形成具有兼备上述优秀性能的较为理想了专用器件。同时器件体积极小,便于在各种设备中使用。

本文根据作者在内锥式智能工业燃气表的实际设计工作中的经验,总结出高精度A/D转换芯片AD7794的特点,并描述其使用方法。

2 AD7794的功能及技术特性

AD7794提供了仪器仪表应用所要求的几乎全部功能,因而减少了设计工作量并节省了许多外围器件。AD7794具有功耗低和完全模拟输入端子,可用在低频信号的测量中。它克服了同类产品中噪声与功耗的局限性,能够同时提供低噪声和低功耗特性。该系列ADC采用2.7v~5.25 v单电源供电,其全功耗消耗电流仅400 μA,同时噪声只有40 nVrms,从而使其适合要求低功耗和高精度测量的应用。它集成了六个差分传感通道的24位ADC,使其非常适合要求较多通道的应用。这六个差分通道可两两组合成差分信号和差分参考输入,能有效克服共模干扰。片上还有低噪声、低温漂的增益级仪用放大器电路,增益可以根据需要进行设置。另外,片上还集成了增益可调的激励电流源和用于温度测量的偏置电压发生器。该芯片可以使用内部时钟,如果同步运行多个芯片时还可以使用外部时钟。采样率也是输出数据的速率可以通过编程在4Hz到500Hz之间调节,在某些速率下如16.6 I-h条件下能够提供同时抑制50 Hz和60Hz干扰信号的功能。

图1给出了AD7794的简化结构,它属于∑-△调制的模数转换器,适用于窄带与高分辨率的场合。AD7794的∑-△调制器将随采样的输入信号转换为数字脉冲串,其“1”的密度包括数字量信息。通过数字滤波和抽取后,输出高分辨率低速率数据。∑-△调制器还具有降噪的作用,因为高的采样率将噪声基底压低,而滤波后大多数(高端频谱部分)噪声被滤除。调制器的阶数越高,在有用带宽内对噪声抑制的作用就越明显。但是,较高阶调制器容易不稳定。因此,必须在调节器阶数与稳定性之间进行权衡。在窄带∑-△模数转换器中,通常使用二阶或三阶调节器,这样器件就会具有良好的稳定性。

图1 AD7794内部简化结构模块图

AD7794的低噪声仪表放大器可以工作在斩波模式,斩波器是AD7794的一个内嵌部件,可以用于消除飘移造成的误差。斩波器的工作原理就是在模数转换器的输入部件多路复用器的输出处交替地倒相(或削波)。然后,对每次斩波的正和负信号区段进行-_次模数转换。接着,用数字滤波器对这两次转换结果取平均。这样,就消除了模数转换器内出现的任何失调误差,更重要的是,将温度对失调漂移的影响降到最低。

3 AD7794的应用电路设计

图2给出了AD7794的应用框图。AD7794具有简化的同步串行接口,易于和微控制器MC相连。AD7794中串行接口、ADC、斩波式仪表放大器和多通道的结构形成了一种全ADC类型——仪(表专)用ADC。

图2 AD7794一个通道典型应用

其中,MSP430F1611是一款超低功耗混合信号处理器,共有一种活动模式(AM)和五种低功耗模式(LPM0~LPM4)。在待机方式下,其耗电为0.7uA;在节电方式下,最低可达0.1uA。AD7794与MSP430F1611的连接十分灵活。下面霞点描述典型的传感器及调理电路的设计,如图3所示。其中AD7794有三套(参考电压和被测电压)六路差分输入端,该电路可任选一套接入。

图3 AD7794输入电路设计

整个电路主要由传感器电桥与信号调理电路组成,传感器以差分方式输m信号,即通过输出正和输出负两端的电压差值来表示。当被测非电鼍发生变化时,会引起传感器的电阻值发生变化,而此变化会线性的反应在R7和R9左端的电位差(电压)上,通过采集这个电位的差值信号就可以计算被测量及其变化。模拟的传感器信号通过AD7794一AIN+和AD7794_AIN一差分端口送到AD7794进行数模转换。在实际使用的过程中,有可能输入的模拟信号电J丘受到干扰而有较大范围的波动,如果直接将传感器上的信号接入到AD,则在极端情况下,如瞬态静电高压,就有可能造成对AD7794永久性的损坏。因此,电路中采用二极管D1、D2、D3和D4使输入信号被钳制在一个安全的范围之内,从而起到过压(包括正和负)保护的作用。电阻R7、R8、R9和R10作为限流电阻使用(其阻值对于信号而言几乎没有影响),进一步保护了后级电路。cl和C2能有效地滤除进入电路的射频干扰,对靠近电台的地区使用特别有效。

AD7794的参考电压可取自内部,也可取A于外部。但是当测量外部电桥信号时,使用外部参考电压比较有效,所以在本电路中使用了外部参考。当使用AD7794在测量微小信号的时候.就会用到片内低噪声仪表放大器,这样可以有效地降低外部噪声的干扰,比如说,当内部放大器的增益为64时,所引入的噪声典型有效值只有40nV。但是当运放的增益大于等于4的时候,其共模电压不能够太低,否则会使运放的特性变坏。根据需要,当AD7794工作与斩波模式时,输入共模电压((AD7794 )+( 一))必须大于. ,这样才_AIN+ AD7794 AIN /2 0 5V能保证输入信号的动态范隔;并且,当使用内部放大器时,如果所使用的外部参考电压VREF接近模拟电源AVDD时,则实际输入的模拟信号值不能超过(Vr。lgain)的90%,否则AD在输入信号的高低两端的线性度会变差。为了很好的解决这个问题,在本电路中使用了R6和R12,这样可以使AD7794的参考电压AD7794.REF+和AD7794 REF一不至于接近模拟电源的极限电压。整个电路采用桥式输入,这样,在外接电源在小范围内有波动的时候,可以保证实际加入到放大器的差值电压和输入的参考电压不受外界的影响。

AD7794采用偏移二进制编码,当使用单极性信号时(Ain+ - Ain > 0),其输入电压与输出数据的关系为:

这个D直接代表了被测量。这里,G为总增益。(REF+ - REF-)为差分参考电压,(Ain+ - Ain-)为输入差压信号。

而当使用双极性信号时(REF>Ain+ - Ain>0如或0>Ain+ - Ain>-REF,输出特性变为:

要用外部参考电压时,由于R5、R7、R11可以忽略,因此有:

在理想传感器中,

R为测量电桥的总电阻,也即桥臂电阻,静态时R1=R2=R3=R4=R,为测量时的每臂电阻变化量。可见,使用外部参考电压(同时做为传感器电压激励)时,ADC输出数据与传感器变化,即与被测量直接相关,与参考电压的实际值无关!这就对参考电,爱的稳定性要求大大降低了。当然,参考电瓜要符合ADC的量值要求,并且,在一次测量(转换)中仍然要求不变(短期稳定即可)。

整个系统适用于高精度低功耗要求的场合。在这里,给整个电桥提供激励的电压也即参考电压取自MSP430F1611的DAC输出端。这样做,既可以保证所加电压的精度和稳定性,又可以在不需要测量信号的时候,可以随时关闭给电桥的供电。当MSP430微处理器进入休眠状态时,也可以使整个系统的芯片连同电路一起处于一个休眠状态,这样可以进一步降低系统功耗。

4 AD7794的实验和实测效果

为了模拟出实际AD7794的使用场合,将图3中的R1、R2、R3、R4全部用电阻箱代替,电阻箱的精度和分辨率为0.1欧姆。实际测试中,使用的电阻变化量为1欧姆。在测试过程中,Rl、R4作为一组,而R2、R3作为一组,两组阻值分别向不间的方向变化,即一组调大.而另一组调小,以此来模拟传感器上的压差变化,然后将实测数据绘成曲线。实验结果示于下图.其中,纵轴为实测的AD转换结果,横轴为压差变化率,即(V+-Vv)/(VRF+-VREF_)。

由图4可以看出,整个AD7794的表现效果令人满意,整个AD转换结果与实际输入的信号成线性变化,而实测的最大线性误差小于l‰。

5 结论

该系统已成功地应用于低功耗燃气计量装置中,并稳定可靠地运行。与传统方案比较,本系统精度高、功耗小、抗干扰能力强,易于调试,体积小,适合于手持、野外、太阳能供电等多种应用场合。这种方法可以推广应用到低频、缓变等信号的广泛工业测量应用中。

本文作者创新点:提出了基于AD7794的高精度超低功耗测量计量装置的设计原理和方法,并以给出了具体的硬件电路,为进一步开发其它类型的测量装置提供了一定的参考作用。

发布者:小宇

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭