当前位置:首页 > 消费电子 > 消费电子
[导读]在测量AC-DC和DC-DC电源、功率器件、电池、电池充电器等输出能量或消耗能量时都需要负载,传统的方法是利用固定电阻和可变电阻器来充当被测负载。一种新兴的电子仪器和测试

在测量AC-DC和DC-DC电源、功率器件、电池、电池充电器等输出能量或消耗能量时都需要负载,传统的方法是利用固定电阻和可变电阻器来充当被测负载。一种新兴的电子仪器和测试设备———电子负载应运而生,他利用功率器件模拟电阻器,具有很强的操作灵活性。目前,电子负载技术发展的比较成熟,就其类型来说,一般有具有定电流( CC)、定电阻( CR)、定电压( CV)、定功率( CP)

等工作模式。研究和开发新型的低成本的电子负载也成为一项有意义的工作。

1 恒流型(CC)电子负载结构框图介绍

恒流型( CC)电子负载是用来测试电压源的多种性能的专门设备。本文介绍一款恒流型电子负载的新方案,他基于反馈控制理论,采用模拟PI调解器,控制N沟道大功率MOSFETDE的导通强度,实现对被测电流的无静差控制。其控制精度高,电路简单,成本低廉。图1为恒流型电子负载的结构框图。直流稳压电源框是一款直流稳压电源电路,他提供恒流设定电压、PI调节器工作电压、电流检测和转换电路的工作电源,要求必须具有的功率输出和较高的电压稳定指标。恒流设定电路可提供线性的可调负极性电压输出。PI调节器由普通的运算放大器构成, PI参数用实验的方法调为最佳。执行机构为N沟道MOS管或MOS管组。


2 控制电路设计及实验研究

要实现一个无静差调节控制,就必须采用比例积分)微分控制规律。对本控制对象,采用比例)积分( PI)

控制就能满足要求。硬件电路如图2所示。电路主要由倒相器, PI调节器, MOS管和霍尔电流传感器组成。设计时一般从控制对象或执行单元进行。首先需要确定的是执行单元的传递函数,即MOS管的放大系数Ks的确定。

2.1 MOS管的放大系数KS的确定

测试电路如图3所示。被测电压源功率足够大,输出电流满足测试要求。调节给定电位器W,测取MOS管G极电压UG和流过MOS管D-S极的电流IO得到一组实验数据记录在表1中,从表中可以看出,当UG≤2. 5 V时,MOS管不导通, IO= 0,称为死区。在UG>2. 5 V后, MOS管开始导通,当UG> 3. 3 V后,其关系呈线性变化。在线性段求取KS.

2.2 电流反馈系数β的确定

也就是霍尔电流传感器转换系数的确定。设计中用到的电流传感器为霍尔传感器,输入为电流,输出为电压,经测试确定霍尔系数K = 0. 8 V/ A,即当传感器的输入端电流为1 A时,输出端的电压为0.8V.β= K = 0. 8 V/A

2.3 PI调节器静态放大系数KP的确定

根据负反馈闭环控制原理有: K =βKP KS = 1 得:KP = 1/ βKS△0. 875V/A.根据此值,选取调节器输入、输出电阻值,以满足RF/RI = KP.

2.4 各电压极性的确定和控制原理简述

各电压极性一般是由后向前推得, MOS管的控制电压UG为正( + ) ,也就要求PI调节器的输出为正( + ) ,又考虑到霍尔电流传感器的输出始终为正( + ) ,为了构成负反馈控制,则PI调节器的给定电压应为负( - )。所以PI调节器采用负相输入,由前一级的倒相器将由电位器W产生的可调正电压变为可调的负电压,作为恒流设定值加在调节器的输入极,与由霍尔电流传感器提供的电流反馈电压进行比较,根据偏差量和正负极性由PI调节器实现比例积分调节,以实现电流( I O )恒定。改变积分电容的大小,以满足响应快速性和稳定性要求。

3 实验研究结果

表2是实验实测数据,从数据规律看, UGD (电位器W)和MOS管漏、源极电流IO成较好的线性关系。且IO / UGD= 1/ β= 1/ 0. 8= 1. 25.实验中的调节响应的快速性和抗扰性能都能调为最佳。

4 几点说明和改进措施

(1)由于采用了PI调节器, MOS管的死区不必专门设计电路来消除, MOS管的非线性在闭环内自行消除。

(2)根据被测设备的性质(阻性,感性,容性) ,总可以通过调节PI参数,以保证其快速性,稳定性和抗扰性要求。

(3)该系统具有很强的可扩展性能。可实现数字给定和调节控制。

(4)对于要求测试电流较大时,可以考虑用多只MOS管的并联组合来扩大负载容量,如图4所示为2只MOS管的并联组合,在此情形下,K`S= mKS; K`P = KP/m,m为所并MOS管的个数。

(5)当扩容后,需要考虑增加MOS管驱动电路。

(6)此电路中没有耗能元件,所有的负载功率消耗仅由环路内元件承担,主要是MOS管自耗。受MOS管自身的功耗性能限制,允许流过的电流不可能太大,即使采用并联电路等扩容措施。所以正常使用时要充分考虑MOS管的散热。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭