当前位置:首页 > 芯闻号 > 充电吧
[导读]在设计工作中,越来越多的场景是,我们根据用户使用产品产生的数据来直接判断我们的设计。甚至有时候,产品经理和设计师并没有完全了解数据的真实含义,就直接根据数据来修改我们的产品设计。这是非常危险的。HBR 的

在设计工作中,越来越多的场景是,我们根据用户使用产品产生的数据来直接判断我们的设计。甚至有时候,产品经理和设计师并没有完全了解数据的真实含义,就直接根据数据来修改我们的产品设计。这是非常危险的。

HBR 的一篇文章简洁明了地阐述了数据不能代替思考这个道理。笔者读完深有同感,并记录一些真实工作例子来思考这个论点。

很喜欢文章中的一句话:当我们要求更多数据进行分析之前,我们需要先了解自己。

作者开篇引用了一些关于大数据的观点,例如,传说中的大数据,让科学过时。大数据让很多学科没有存在的意义,例如,遗传学,语言学,社会学。

Wired的编辑Anderson说:“当数据充足的时候,数字就可以代表一切,自我论证,得出结论。”

作者也引用了去年一位CEO的观点:“我相信数学已经胜过科学。你已经不需要去了解为什么,你只需要知道A,B两个事件发生后,C会发生。”

 

 

作者认为以上的观点在某种程度上是真实的。科学的分析方法可以帮助我们观察,假设,测试,与分析,而足够的数据以及强大的电脑分析能力让以上步骤简单而成本低,效率更高。

例如,A/B tests,像Google与Amazon这样的大公司可以提供给不同用户群体不同的页面布局,来测试哪种布局得到的效果更好,然后选择效果好的版本来作为最终版本。这个方法已经在很多公司普遍流行。

但是,这样的方法一定是有效的么?作者认为,这样并不能说明这个测试过程是完全科学且没有任何假设的。

我们人类最擅长在事实发生后编一个故事。而在以上场景中,我们只是把编故事的时间挪到了事实发生之前。

大数据时代,我们的假设以及说故事的能力,是与数据分析息息相关的。

所以,作者引出另一种观点:

数字不可以代表一切,自我论证,得出结论;数字是我们讲故事的依据。数据驱动的预测方式可能成功,也可能失败。当我们要求更多数据进行分析之前,我们需要先了解自己。

作者最后总结:

我们对事物的发展总是有自己的主观意见。我们应该合理使用数据来修正我们的思考,但是这个模式成功的前提是,我们必须在分析数据前要先思考。

简短的文章描述的论点很鲜明,我这里理解到有用的点是:数据分析是一个很强大的工具,也是未来的趋势,但是在数据分析的整个过程中,包括前,中,后,人类的思考才是核心。脱离了思考的数据分析,带来的是不可预测的结果。数据分析不能代替思考这个过程。

笔者先讲一个例子,非常吻合本文的论点。

以下是我4年多前在雅虎移动搜索做的“直接搜索”,流程是,用户在手机上搜索“Weather”,手机自行判断本机位置,然后展示当地的天气。下面例子是在旧金山搜索“Weather”得到的页面的顶部,这个区块往下就是正常的10个blue links

 

 

当时雅虎移动搜索类似这样的“直接搜索”有30多个,包括本地商务,天气,星座,明星,音乐,购物等等。

有一天,产品经理拿着这30多个“直接搜索”的数据来找我,说:

“yoyo,你看,天气的直接搜索,点击率是最低的,只有不到1%,我们是不是应该删除这个直接搜索,这个直接搜索没用。”

我第一时间心理反应是:“什么?这个直接搜索应该是非常有用的,业界研究表明用户对天气搜索的需求是手机搜索的前几类,也符合我自己对这个产品设计的认知,数据怎么这么低?”

“不能完全依赖这个数据来决定”,我告诉自己,然后想了一下,了解了为什么数据会偏低,然后告诉产品经理:

“数据低就对了!我们做“直接搜索”的价值,就是希望提供给用户10个blue links之外,给用户提供直接展示的答案,减少用户点击links到下一页的场景。这个天气搜索的场景,用户搜索天气,看到了答案,52度,他们不需要再往下走了,一部分用户希望了解后七天的天气,才会点击进入看完整天气预报,但是大部分用户看到答案就会满足,完成任务,数据低反而证明了我们产品设计是成功的。”

产品经理想了想,认同了,我们又聊了一会儿,共识是,如果每个产品设计决策都是纯粹依照数据而不思考,得有多少奇怪,错误的决策发生啊!

思考还能带来选择完整数据的好处。例如做电商网站,搜索“电视机”,得到的搜索页面。页面布局可以生成一张热图,来展示用户点击各个区块的点击率。如果不思考,纯粹以点击率多少来修改页面布局,结果一定是最好的么?当然不是。电商需要的是用户进行购买,产生商业价值。而商业价值相关的应该是购买转化率。所以思考后,发现电商网站的布局不能光看点击率,还要加入购买转化率一起思考。

数据分析中,选择数据是关键,不经过思考地选择数据,会出现两种不好的情况,一种是选择不足,得出结果不准确,一种是选择过多,无法得出单一结果。

当然,提倡思考不代表让我们固执。我们有时在数据分析会犯一个错误,就是主观地想好了一个论点,然后自己去挑选数据来论证自己。这个也是数据分析的经典错误。如文章所说,数据分析是辅助我们思考的有效方法,而不是不择手段证明自己观点的工具。

诚然,用户使用产品产生的数据是我们设计师最宝贵的第一手资料。但是如何使用这些数据,如何分析数据来增益产品设计,是一个很严谨的过程。我们在主动思考与客观分析数据的过程中,不能犯一丝错误,才能得到最佳结果。古人云“失之毫厘,谬以千里”,大致是这个意思。

最近的工作,有两块直接与数据分析接触。一块是我们做面向千万级用户的产品,需要不停根据用户数据来验证,修改自己的设计;一块是做面向开发商的开放平台数据分析工具,来帮助开发商根据数据分析,得到利于他们产品发展的商业结论。所以笔者最近也在研究不少数据分析的资料,更多的会与大家之后分享。

当然,我的文章也是一种数据,请大家辩证地读,才会更有受益。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭