当前位置:首页 > 电源 > 电源
[导读]在传统全桥电路的基础上利用单象限电路研究新的电路,达到拓宽现有电路拓扑应用领域的目的。介绍了电压双象限Buck,Boost,Buck/Boost电路以及对他们的开关器件关断和开通的分析。

    摘要:在传统全桥电路的基础上利用单象限电路研究新的电路,达到拓宽现有电路拓扑应用领域的目的。介绍了电压双象限Buck,Boost,Buck/Boost电路以及对他们的开关器件关断和开通的分析。

    关键词:变换器;拓扑;双象限;电压控制

引言

在直流变换中不产生电能形式变化,只产生直流电参数的变化。DC/DC变换器具有成本低、重量轻、可靠性高、结构简单等特点,因此,在工业领域和实验室得到了广泛应用。单象限直流电压变换器电路的特点是输出电压平均值Uo跟随占空比D值而变,但不管D为何值,Uo的极性则始终不变,这对于直流开关稳压电源一类的应用场所是能够满足要求的。但对于直流调速电源,负载为直流电动机时,上述性能便不能满足要求,因而发展了多象限直流电压变换电路。

    双象限电路分为输出电流平均值Io极性可变的电路与输出电压平均值Uo极性可变的电路两类,通常前一种电路称为电流双象限电路,后一种电路称为电压双象限电路。电流双象限电路是指输出电流平均值Io的幅值和极性均随控制信号us而变化,但输出电压平均值Uo的极性却始终为正,即电路可运行于第一和第二象限。电压双象限电路是指输出电压平均值Uo的幅值和极性均随控制信号us而变化,但输出电流平均值Io却始终为正,即电路可运行于第一和第四象限。本文将对电压双象限Buck?Boost电路进行分析。

1 Buck电路

1.1 电路结构

主电路如图1所示。用电感、内阻和等效电压串联电路表示有源负载,桥的直流输入端并联滤波电容。这是一个全桥电路结构,桥的每臂用全控型器件(S1,S2)和不控型器件(D1,D2)组成。S1及S2的控制采用PWM控制,这样可以调节D值,并且及时检测负载的运行状况,由此控制开关的关断和开通。此电路的元器件、电源、负载均假设为理想的。输出滤波电感足够大,可保证负载电流连续,且线性升降。

    1.2 工作原理

1.2.1 运行于第一象限

这是指输出端电压平均值和电流平均值均为正的工作状态。

    (0≤t≤DT) S1及S2均导通,等效电路如

    图2(a)所示,输出电压Uo为Ud,输入电流等于输出电流,输出电流线性增长,负载从电源吸取能量。

(DT≤t≤T) S1导通,S2断开,D1正偏续流,等效电路如图2(b)所示,由于S1与D1导通,Uo的值为零。

输出电压平均值为 Uo=DUd

1.2.2 运行于第四象限

这是指输出端电压平均值为负而电流平均值为正的工作状态。当电路负载为电动机且驱动位能性负载,如卷扬机的提升机构,当放下重物时,电机在重物作用下反转,电枢感应电势反向,电磁转矩成为制动转矩,为了保证安全,必须改变控制信号的极性和幅值,使电路工作于第四象限,将位能经过变换电路反馈到直流电源。具体工作过程如下。

    (DT≤t≤T)S1及S2均断开,电感端电压反向,D1,D2正偏导通,等效电路如图3(a)所示,输出电压Uo为-Ud,负载反馈能量。

(0≤t≤DT)S1断开,S2导通,负载电流由D2换到S2中。等效电路如图3(b)所示,Uo的值为零。

输出电压平均值为 Uo=-DUd

由以上分析可知此电路及其控制策略可以实现双象限Buck电路功能。

2 Boost电路

2.1 电路结构

主电路如图4所示。图中S1,S2,S3为全控型器件,D1及D2为不控型器件。负载依然为有源负载,直流输入端串联电感。S1,S2,S3的控制采用PWM控制,此电路的元器件、电源、负载同样假设为理想的。输出滤波电感足够大,可保证负载电流连续,且线性升降。可以看出,本电路的设计思想也是利用全桥实现双象限运行,其好处在于简单、可靠。

    2.2 工作原理

2.2.1 运行于第一象限

(DT≤t≤T)S1断开,S2及S3均导通,等效电路如图5(a)所示,电感电压UL=Ud-Uo。

0≤t≤DT)S1,S2,S3均导通,等效电路如图5(b)所示,电感电压UL=Ud。

输出电压平均值为 Uo=Ud/(1-D)

    2.2.2运行于第四象限

(DT≤t≤T) S1,S2,S3均断开,电感端电压反向,D1及D2正偏导通,等效电路如图6(a)所示,电感电压UL=Ud+Uo。

(0≤t≤DT) S1导通,S2及S3均断开,等效电路如图6(b)所示,电感电压UL=Ud。

输出电压平均值为 Uo=-Ud/(1-D)

3 Buck-Boost电路

3.1电路结构

主电路如图7所示。图中S0,S1,S2,S3,S4为全控型器件。负载依然为有源负载,直流输入端并联电感Lo。所有开关均采用PWM控制,此电路的元器件、电源、负载同样假设为理想的。输出滤波电感足够大,可保证负载电流连续,且线性升降。此电路与双象限Boost电路不同之处是主开关与电感相互交换位置。也是利用单象限Buck?Boost电路的主电路衍生出来的,并利用全桥全控电路实现双象限功能。改变占空比D可以实现升压或降压功能。

    3.2 工作原理

3.2.1 运行于第一象限

(0≤t≤DT) S0,S1,S2均导通,S3及S4断开,等效电路如图8(a)所示,电感电压UL=Ud。

(DT≤t≤T)  S0,S1及S3断开,S2及S4导通,等效电路如图8(b)所示,电感电压UL=-Uo。

    3.2.2 运行于第四象限

(DT≤t≤T) S0,S2,S4断开,S1及S3导通,电感端电压反向,等效电路如图9(a)所示,电感电压UL=Uo。

(0≤t≤DT)S0,S3,S4导通,S1及S2断开,等效电路如图9(b)所示,电感电压UL=Ud。

输出电压平均值为Uo=-DUd/(1-D)

4 结束

本文在传统的单象限Buck、Boost、Buck-Boost电路的基本上衍生了双象限的Buck、Boost、Buck-Boost电路,并且分析了其具体的工作过程。本文的分析为双象限电路及直流变换电路的研究提供了新的思路。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭