当前位置:首页 > 电源 > 电源
[导读]  有些人说电池寿命是移动手机中最重要的用户需求。即使当消费者渴望先进的多媒体功能,他们也不愿意得到这些功能而放弃长通话的时间及待机时间。即便手机设计师延长了电池寿命, 他们正面临“矛盾”的需求而增加消

  有些人说电池寿命是移动手机中最重要的用户需求。即使当消费者渴望先进的多媒体功能,他们也不愿意得到这些功能而放弃长通话的时间及待机时间。即便手机设计师延长了电池寿命, 他们正面临“矛盾”的需求而增加消耗更多功率的新功能。尽管电池技术在近几年在不断的进步,但是还没有突破性的技术革新,改进效率的任务落在 IC设计 厂商上,更低的功率消耗,允许更好的功率管理。

  在移动电话中,驱动天线的功率放大器 (PA)是电池功率的最大消耗者。通过提高移动电话所有输出功率等级的效率可以有效的减少功率消耗, 从而延长电池寿命。本文将介绍ANADIGICS 的CDMA 和 WCDMA 功放使用的HELPTM (低功率高效率)来满足移动电话对功率的需求。

  为了提高效率,首先要评估在城市和郊区的环境中大多数移动电话通信所需要的功率水平。对此,我们可以参考CDMA开发团队(CDG)发表的数据。CDG发表的功率级别分布图表显示在以上两种环境下移动电话处于开启状态的多数时间里,大部分移动电话工作时的发射功率远远低于最大发射功率。这是因为大多数移动电话用户打电话的时候通常都移动电话塔较近, 因此移动电话工作时只需要相对较低的输出功率。例如,当无线标准要求最大的输出功率时大约为 +28 dBm,超过 80%通话的功率需求都少于 +10 dBm。遗憾的是,传统的 PAs 在低功率级别工作时效率将大幅降低,这增加了电流消耗。在低功率级别工作时提高效率,能够大幅延长电池的寿命。一个标准的WCDMA功放输出+28dBm功率时效率为42%,输出+16dBm时效率将大大降低,仅为8%,静态电流大约为50 mA。

  传统射频功放 是双极 GaAs 器件,在高低功率水平间进行功率转换,切换的门限是+16 dBm。一种常用的方法是使用外部 DC-DC 转换器来切换功放的电压,从而使得 PA 效率最大化。这种方法的缺点是在材料清单(BOM)增加了额外的器件和成本,并浪费了主板空间。ANADIGICS 的HELPTM PAs,基于其 InGaP- PlusTM 的专利技术,提供了一个更优良和更廉价的解决方案。InGaP- PlusTM 允许电路设计师把高性能 HBTs 和高性能pHEMTs集成在同一个基底中。这种因此产生的BiFET 技术能利用HBT来构建高线性放大器,使用 pHEMTs来构建快速、低损耗的开关。使用 BiFET 技术的PA可以不使用外部转换器来实现低输出功率时效率的最大化。pHEMT 开关允许在 PA 中选择不同的放大器链路,这取决于输出功率的要求。其好处是中等输出功率时效率超过2倍,在16dBm时效率从 8%提高到 21%。由于效率的提高,平均的功率消耗将减少50% 。通过三种功率级别途径的处理,第 3 代 HELP器件 (称为HELP3)功率消耗降低多达 75% ,静态电流也明显减少,HELP技术使静态电流从50mA降低到 15 mA, 而HELP3 的静态电流仅为 7 mA(表1)。

  表1. 显示相关的三种 PAs 规范.

 

  这在实际应用中是如何被实现的?考虑城市环境中典型的移动电话,接收电路和基带部分消耗 125 mA 。当其它的发射电路功率消耗相等时,发射电路的功率消耗将由使用的PA不同而变化(发射电路时的功率消耗不仅仅包括 PA,也包含其它构件例如 RF 驱动放大器)。以下是在通话模式下,三种方案的电流消耗:[!--empirenews.page--]

  1. 移动电话,使用传统功放(two-state PA):

  PA的电流消耗为70mA,通话模式下电流消耗为:116mA(发射电路) + 125 mA (基带&接收电路) = 241 mA

  2. 移动电话,使用HELP 功放(two-level BiFET):

  PA的电流消耗为34mA,通话模式下电流消耗为:81mA(发射电路) + 125 mA (基带&接收电路) = 206mA 。

  3. 移动电话,使用HELP3功放(three-level,BiFET):

  PA的电流消耗为18mA,通话模式下电流消耗为:68mA(发射电路) + 125 mA (基带&接收电路) =193 mA 。

  HELP 及HELP 3 静态电流可以分别减少 70% 和 86% ,同样将有助于待机状态下手机的降低功耗。

  当然,功率消耗不是挑选PA的唯一理由,线性度、噪声以及支持高端服务 (HSDPA)等系统级的性能都要考虑在内。无论如何,功放的基本性能必须符合规范。

  在满足了基本的性能要求之后,开始进行PA的功耗管理。更高的集成度,增加更多的功能,同样节约了空间和减少材料清单。例如,在HELP和 HELP3 技术之间的一个差异是 HELP3 PA内置了电压转换器。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭