当前位置:首页 > 电源 > 电源
[导读]摘要:经典的DC/DC变换器,如Buck变换器、Boost变换器、Buck-Boost变换器、罗氏变换器和Cuk变换器[1-5],通常都是由电感和电容组成,所以它们的体积大而功率密度低。开关电感已被成功地应用于DC/DC变换器中,开创了

摘要:经典的DC/DC变换器,如Buck变换器、Boost变换器、Buck-Boost变换器、罗氏变换器和Cuk变换器[1-5],通常都是由电感和电容组成,所以它们的体积大而功率密度低。开关电感已被成功地应用于DC/DC变换器中,开创了设计高功率密度变换器的方法。如美国麻省理工学院MIT)JohnG.Kassakian教授为下一世纪未来的汽车设计了一种新的电源系统[6],该系统的核心就是一个在直流+42V和-14V之间进行变换的二象限DC/DC变换器。

关键词:开关电感神经网络直流变换器

Switched Inductor Two- quadrant DC/DC Converter with Neural Network Control

Abstract:Classical DC/DC converters usually consist of inductors and capactiors such as buck converter, boost converter, buck- boost converter,Luo- Converters and Cuk- Converter [1- 5]. Because all classical converters consist of capactiors and inductors, they have big size and low power density. Switched- inductor has been successfully employed in DC/DC converters and opened the way to build the converters with high power density. For example, Professor John G.Kassakian of MIT designed a new power supply system for the future car in next century[6].The heart of this system is a Two- Quadrant DC/DC Converter operating the conversion between+ 42V and - 14VDC.

Keywords:Switched Inductor Neural Network DC/DC Converter

1前言

  运行在QⅢ和QⅣ象限的二象限变换器如图1所示,它是由二个开关,二个二极管和仅用一个电感L组成的。通常认为源电压V1和负载电压V2都是恒定电压。负载电压V2可以是蓄电池或电动机的反电势(EMF)。因为电路是完全对称的,所以电路的任一端都可以是电源端或负载端。源电压不一定要高于负载电压。R是电路的等效电阻。有两种运行模式:

  (1)模式C(象限Ⅲ):电能由V1端向V2端传递;

  (2)模式D(象限Ⅳ):电能由V2端向V1端传递。

  每种模式都有“通”和“断”两种状态。通常每一种状态都可以运行在不同的占空比k下。开关的周期是T,此处T=1/f。开关状态如表1所示。

表1开关状态(表格中空白栏表示关断状态)

开关 模式C(QⅢ) 模式D(QⅣ)
接通状态 关断状态 接通状态 关断状态
S1      
V1      
S2      
V2      

模式C接通状态如图2(a)所示:开关S1接通,另一开关S2和所有二极管断开。在这种情况下,流经V1-S1-R-L回路的电感电流增加,电感L上的电压接近恒定电压V1值。

  模式C关断状态如图2(b)所示:二极管D2导通,两只开关和二极管D1断开。在这种情况下,流经L-V2-D2-R回路的电感电流iL减少,电感L上的电压接近恒定电压V2值。电感L传输电源能量给负载。电感电压和电流波形如图2(c)所示。

  模式D接通状态如图3(a)所示。开关S2接通,其它开关和二极管断开。在这种情况下,流经V2-L-R-S2回路的电感电流iL增加。电感L上的电压接近恒定电压V2值。

图1二象限开关电感DC/DC变换器

  模式D关断状态图如图3(b)所示,二极管D1导通,两只开关和二极管D2断开。在这种情况下,流经L-R-D1-V1回路的电感电流iL减少,电感L上的电压接近恒定电压V1值。电感电流和电压的波形如图3(C)所示。

         

(a)模式C接通状态图(b)模式C关断状态图

(c)电感电压和电流波形

图2模式C

                                   

(a)模式D接通状态图                                    (b)模式D关断状态图 [!--empirenews.page--]

(c)电感电压和电流波形

图3模式D

2模式C(象限Ⅲ运行)

2.1连续模式

  若等效电阻很小,则电阻上的电压降可以认为是RIL。

由此可见传输效率仅取决于导通占空比k、源电压和负载电压值,而与R、L和f无关。

2.2非连续模式

  由方程(9)可知,当ζ≥1时电流iL不连续,所以连续区和非连续区之间的界限定义为:

  连续和非连续区的边界如图4所示。从方程(19)可以看出非连续导通区是由下列因素产生的:

  (1)开关频率f太低;

  (2)导通占空比k大小;

  (3)电感L大小;

  (4)负载电阻R太大。

图4 连续和非连续区的边界图

  整个导通周期远小于T。

iL(kT)是电感电流iL(t)的峰值,同时也是变化量ΔiL的峰—峰值。

当t=t3时,由方程(22)可得iL(t3)=0。

3模式D(象限Ⅳ运行) [!--empirenews.page--]

3.1连续模式

图4连续和非连续区的边界图

图5连续和非连续区的边界图

  若等效电阻R很小,则电阻R上的电压降可以认为是RIL。

由此可见传输效率仅取决于导通占空比k、源电压和负载电压,与R、L和f无关。

3.2非连续模式

  连续和非连续区的边界如图5所示。从方程(49)可以看出非连续导通区是由下列因素产生的:

  (1)开关频率f太低;

  (2)导通占空比k太小;

  (3)电感L太小;

  (4)负载电阻R太大。

  整个导通周期远小于T。假设导通周期位于0和t4之间,电感L上的电压和电流为:

图5 连续和非连续区的边界图

iL(kT)是电感电流iL(t)的峰值,同时也是变化量ΔiL的峰—峰值。当t=t4时,由方程(52)可得iL(t4)=0。

4神经网络控制

  这种变换器工作于开环控制方式。由公式(17)和(47)可见,因为电路的电阻R是一随机参数,所以它对系统的工作点有很大的影响。为了获得一个稳定的变换运行,我们在系统中采用神经网络控制[7,8〗。神经网络控制包括一个由比例加积分(PI)运算和神经网络组成的闭环控制。这一系统的全图如图6所示。

  比例加积分(PI)运算在4.1中叙述。神经网络由三层组成,分别是输入层、隐含层和输出层。神经网络的结构如图7所示。三层中所有节点的函数如图8所示。它们分别在4.2和4.3中叙述。

4.1数学模型

  比例加积分(PI)运算由一个比例加积分控制器和负载组成。式中:τ=L/R,Vi在开关接通时为Vl,在开关关断时为V2。

图6用神经网络控制的二象限开关电感DC/DC变换器

图7神经网络

 

图8节点函数 [!--empirenews.page--]

这是一非线性控制系统。由方程我们可以看出电阻R严重地影响了系统的稳定性和响应。

4.2反向传播神经网络(BPNN)方案

  做少量的数学运算可以看出,对于一个恒定的电感电流,存在着一个相应的外加电压Vi。

可以把一个具有多输入和多输出的反向传播神经网络(BPNN)放置在输入端和输出端之间。经过分析,电流-功率控制采用三个神经元层次,分别是输入层(IL),隐含层(HL)和输出层(OL)。反向传播神经网络(BPNN)的结构如图7所示,它由三层组成,每层都含有大量的神经元。同一层的所有神经元的函数是相同的,而不同层的神经元函数不同。控制系统布局示意图如图6所示。

4.3结构描述

w1ij,w2ij和w3ij是输入层、隐含层和输出层神经元的权值;θij是n-维第i个元素的活化宽度;Pij是r-维第i个元素;λij是宽度矢量的第i个元素;ρij是m-维第i个活化值。

4.4自学习函数

  由系统要求可知训练最佳极限是:

  ·电流响应超调量≤5%;

  ·功率响应超调量≤10%;

  ·波形摇摆≤2个周期。

  所有神经元的加权系数都会影响输出参数的响应,加权系数由反向传播学习技术来确定以满足上述极限。在系统的设计中,神经网络每一神经元的所有权值必须被确定,通常称为训练过程。这里我们介绍一种自动调节技术来训练这些权值。

  反向传播学习技术是以最小均方(LMS)运算为基础的,它是与斜率有关的搜索方法。学习过程可以从预置初始值开始,即将所有加权值(率)先设置为一个单位。当用这些权值得出的实际输出与目标之间差别最小时,学习过程才算完成。由于神经网络是一个规模不大的网,所以训练过程不需要很长时间即可完成。通常仅需要5∽15秒。

5实验结果

  测试装备包括一个14V的电池作为负载和一个42V的直流源做电源。测试条件为:f=1∽5kHz,V1=42V和V2=-14V,L=0.3mH,R=3mΩ,体积=4000(in3),实测结果如表2所示。总的平均功率密度(PD)为27.8W/in3。这种电路的功率密度比经典变换器的功率密度要高得多。经典变换器的功率密度通常小于5W/in3。因为开关频率很低,所以电磁干扰(EMI)很弱。

6结论

  人工神经网络控制技术已成功地应用在二象限开关电感DC/DC变换器中,它克服了当导通常占空k为临界值时所引起的系统运行不稳定的不足,从而获得一个平稳的能量传输过程。实验结果证实了我们的设计和反向传播神经网络(BPNN)技术的优点。

表2不同频率时的实测结果

L(mH) R(mΩ) f(kHz) k II(A) IO(A) IL(A) PI(W) PO(W) η(%) PD(W/in3)
0.3 3 1 0.3 280 653 933 11760 9146 77.7 2.58
0.3 3 1 0.4 1120 1680 2800 47040 23520 50 8.70
0.3 3 1 0.5 2333 2333 4666 98000 32666 33.3 16.11
0.3 3 1 0.6 3920 2613 6533 164640 36586 22.2 24.81
0.3 3 1 0.7 5880 2520 8400 246960 35280 14.2 34.80
0.3 3 1 0.8 8213 2053 10266 344960 28746 8.3 46.08
0.3 3 1 0.9 10920 1213 12133 458640 16986 3.7 58.65
0.3 3 3 0.3 280 653 933 11760 9146 77.7 2.58
0.3 3 3 0.4 1120 1680 2800 47040 23520 50 8.70
0.3 3 3 0.5 2333 2333 4666 98000 32666 33.3 16.11
0.3 3 3 0.6 3920 2613 6533 164640 36586 22.2 24.81
0.3 3 3 0.7 5880 2520 8400 246960 35280 14.2 34.80
0.3 3 3 0.8 8213 2053 10266 344960 28746 8.3 46.08
0.3 3 3 0.9 10920 1213 12133 458640 16986 3.7 58.65
0.3 3 5 0.3 280 653 933 11760 9146 77.7 2.58
0.3 3 5 0.4 1120 1680 2800 47040 23520 50 8.70
0.3 3 5 0.5 2333 2333 4666 98000 32666 33.3 16.11
0.3 3 5 0.6 3920 2613 6533 164640 36586 22.2 24.81
0.3 3 5 0.7 5880 2520 8400 246960 35280 14.2 34.80
0.3 3 5 0.8 8213 2053 10266 344960 28746 8.3 46.08
0.3 3 5 0.9 10920 1213 12133 458640 16986 3.7 58.65

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭