当前位置:首页 > 电源 > 电源
[导读] 1 引言 提高开关电源的功率因数,不仅可以节能,还可以减少电网的谐波污染,提高了电网的供电质量。为此研究出多种提高功率因数的方法,其中,有源功率因数校正技术(简称APFC)就

 

1 引言                                 
提高开关电源的功率因数,不仅可以节能,还可以减少电网的谐波污染,提高了电网的供电质量。为此研究出多种提高功率因数的方法,其中,有源功率因数校正技术(简称APFC)就是其中的一种有效方法,它是通过在电网和电源之间串联加入功率因数校正装置,目前最常用的为单相BOOST前置升压变换器Ô­理,它由专用芯片实现的,且具有高效率,电路简单,成本低廉等优点,本文介绍的低成本零点流型APFC控制芯片FAN7528N即可实现该功能。
2 FAN7528的电路特点
2.1 如图1所示,FAN7528N DIP8封装,也有SMD封装(FAN7528M),内部含有自启动定时器,正交倍增器,零电流检测器,图腾柱驱动输出、过压、过流、欠压保护等电路。 
2.2 FAN7528 PFC控制芯片的性能特点
该芯片的最大特点是采用零电流导通变频控制模式,其它性能特点如下:
« 内置启动定时电路;
« 内置R/C滤波器,可省掉外部R/C;
« 过压及欠压比较器;
« 零电流检测器;
« 单象限乘法器;
« 1.5%的内部可调整的带宽;
« 低启动电流及低工作电流
FAN7528是一个引脚简单,高性能的有源功率因数校正芯片。它是被优化的,稳定的,低功耗,高密度的电源芯片,且外围元器件少,节省了PCB布线空间。内置R/C滤波器,抗干扰能力强,对抑制轻载漂移现象增加了特殊电路。对辅助电源范围不要求,输出图腾驱动电路限制了功率MOSFET短路的危险,极大地提高了系统的可靠性。
3 有源功率因数校正­理设计
3.1如图2所示控制芯片采用FAN7528,功率MOSFET Q1的通、断受控于FAN7528N的零点流检测器,当零电流检测器中的电流降为零时,即升压二极管D1中的电流为零时,Q1导通,此时的电感L开始储能,电流控制波形如图3所示,这种零电流控制模式有以下优点:
« 由于储能电感中的电流为零时,Q1才能导通,这样就大大减少了MOSFET的开关应力和损耗,同时对升压二极管的恢复时间没有严格的要求,另一方面免除了由于二极管恢复时间过长引起的开关损耗,增加了开关管的可靠性。
« 由于开关管的驱动脉冲时间无死区,所以输入电流是连续的并呈正弦波,这样大大提高了系统的功率因数。
3.2 应用设计举例
技术要求:
« 输入电网电压范围:AC90V-265V
« 输出直流电压: DC400V
« 输出功率:150W
PFC电感的设计
确定磁芯的型号
磁芯选用:EI40材料:PC40(AL=4860±25%)nH/N2
输出功率:P0=V0I0 式中V0为输出电压,I0为输出电流
计算电感的峰值电流Ipk1=0.98)
Ipk=2V0I0/(η1×Vin(peak)),将输入电压Vin=85V,264V分别代入求得,
Ipk1=2.71A,Ipk2=0.87A
计算电感的电感量L(设定最小开关频率fsw(min)=33kHz)
L=η1/(4 fsw(min) V0I0(1/V2in(peak)+1/ (Vin(peak)( V0- Vin(peak)))),将Vin=85V,IVin=264V分别代入上式求得,L1=560μH,L2=530μH,实际取L=535︿550μH电感的电气理图:如图4所示    
升压MOSFET的选择:
计算流过MOSFET的最大有效值电流IQrms
IQrms=2√2 V0I0(max)/(η1×Vin(LL))×(1/6-4√2 Vin(LL)/(9π×V0))1/2
代入相关数值得,IQrms=0.955A
故流过MOSFET的峰值电流取为Ipk =1.2×IQrms=1.15A
计算MOSFET所承受的最大反向电压VDS(max)
VDS(max)=1.2×264×√2=450V
确定MOSFET的规格型号
根据Ipk、VDS(max)及降低功耗的Ô­则,选用Fairchild的MOSFET,其型号及技术指标如下:
FQP13N50,VDSS=500V,ID=12.5A,RDS(on)=0.43Ω,PD=170W TO-3P
升压二极管的选择:
计算流过二极管的平均电流IDavg
IDavg=I0(max)=0.4075A
故流过二极管的峰值电流取为Ipk =1.2×I0(max)=0.489A
计算二极管的最大反向电压VR(max)
VR(max)=1.2×V0=480V
确定二极管的规格型号
根据Ipk、VR(max),选用IXYS的HiPerFREDTM二极管,其型号及技术指标如下:
DSEP 6-06AS,VRRM=600V,IFAV=6A,Ptot=55W,TO-252 A
整流桥的选择
计算整流桥所承受的最大反向电压VR(max)
VR(max)=√2×Vin(max)=375V
计算流过整流桥的有效电流Irms
Irms=Pin/V(in-max)rms=1.36A
故流过整流桥的最大电流值:1.4×Irms=1.90A
确定整流桥的规格型号
根据上述条件选用RECTRON的整流桥,其规格型号及技术指标如下:
RS406L,VRRM=600V,6A
其它参数按常规APFC,参照FAN7527使用说明,此处略。
如图5所示FAN7528N在APFC前置变换器中的应用电路
4 使用FAN7528的问题及解决方法
« PFC中的自举二极管速度越快越好;
« 注意MOSFET的源极与地线的连接,减少谐振的发生;
« PFC升压后高压电容的容量要够,尽量采用标准值;
« 整流桥后的金属化薄膜电容调整可以改变谐振;
« FAN7528的1脚和3脚之间加R/C,适当调整参数可以减少轻载不稳定;
« FAN7528的1脚和2脚之间的电容值影向启动时间;
« 该芯片在使用中发现,有很多优点,也有缺点。
5 结语
该设计¾­多次反复试验,PFC升压电感参数调整,及其它外围参数设计试验确定,功率MOSFET等器件的计算,已成功设计出150W升压前置变换器,且后级设计DC-DC,已成功用于24VDC/5A输出,120W功率因数校正开关电源,功率因数高达0.998,整机效率高达88%。
按照此方案还可以设计出200W-300W功率电源。实践证明该方案是可行的,有一定的应用价值。
参考文献:
[1] FAN7528N使用手册及应用设计,2007年2月
[2] 赵珂,苏达义 MC34262系列PFC控制芯片的应用研究[J]。电源技术应用,2001年,第12期: P36-38。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭