当前位置:首页 > 电源 > 电源
[导读]在高功率因数校正AC/DC电路中广泛采用UC3842、UC3855A等专用控制芯片来实现功率因数校正,而在移相全桥DC/DC电路中广泛采用TL494、UC3875等专用电源芯片来驱动开关管,特定的电源芯片本身不可编程、可控性较差、难以

在高功率因数校正AC/DC电路中广泛采用UC3842、UC3855A等专用控制芯片来实现功率因数校正,而在移相全桥DC/DC电路中广泛采用TL494、UC3875等专用电源芯片来驱动开关管,特定的电源芯片本身不可编程、可控性较差、难以扩展以及不易升级维修,同时电源芯片为模拟控制芯片,具有模拟电路难以克服的由温漂和老化所引起的误差,无法保证系统始终具有高精度和可靠性,克服以上缺点可采用数字控制器DSP代替传统的模拟控制芯片。目前数字处理(DSP)技术逐渐成熟,新一代DSP采用哈佛结构、流水线操作,即程序、数据存储器彼此独立,在每一时钟周期中完成取指、译码、读数据以及执行指令等多个操作,从而大大减少指令执行周期。另外,由于其特有的寄存器结构,功能强大的寻址方式,灵活的指令系统及其强大的浮点运算能力,使得DSP不仅运算能力较单片机有了较大地提高,而且在该处理器上更容易实现高级语言。正是由于其特殊的结构设计和超强的运算能力,使得以前需要硬件才能实现的功能可移植到DSP中用软件实现,使数字信号处理中的一些理论和算法可以实时实现。

  1 数字控制开关电源系统

  该通信开关电源主要由主电路和控制电路组成,主电路主要由单相高功率因数校正AC/DC变换电路和移相全桥软开关DC/DC变换电路组成,它包括单相交流输入电源、滤波网络、整流电路、Boost高功率因数校正电路和移相全桥变换电路。控制电路主要包括DSP数字控制器,它由DSP、驱动电路、检测电路、保护电路以及辅助电源电路组成。系统主电路和控制电路原理框图如图1所示,图1中E表示输入电压及电感电流、输出电压及电流和主开关管漏极电压、采样电路;B表示功率开关驱动电路;F表示输出电压及电流、原边电感电流和4个开关管漏极电压采样电路。
 

  

 

  1.1 单相功率因数校正AC/DC变换电路

  单相功率因数校正AC/DC变换电路采用Boost型ZVT-PWM变换器,其电路图如图2所示。该电路能实现主开关管S的零电压开通和二极管D的零电流关断。

  

 

  1.2 移相全桥软开关DC/DC变换电路

  移相全桥软开关DC/DC变换电路采用如图3所示的全桥DC/DC变换器。

  

 

  1.3 基于DSP的硬件电路设计

  针对TMS320F2812为核心的数字控制电路如图4所示。从图4中可以看出,控制系统主要包括以下几部分:DSP及其外围电路、信号检测与调理电路、驱动电路和保护电路。

  

 

  其中,信号检测与调理电路主要完成对图2输入电流和电压采样、A/D等功能,DSP产生脉冲信号然后通过D/A转换后驱动图2,3的功率开关管。[!--empirenews.page--]1.4 系统控制算法软件实现

 

  DSP数字控制能够实现较之模拟控制更为高级而且复杂的策略,与模拟控制电路相比较,数字控制电路拥有更多的优点:数字PID系统相对于模拟PID系统具有设计周期短、灵活多变易于实现模块化管理,能够消除因离散元件引起的不稳定和电磁干扰等优点。数字控制系统主程序图如5所示。主程序的作用:初始化,其中包括给控制寄存器赋初值,这时系统工作时钟开CAP1INT、CAP2INT中断,在等待中断的空闲时间内采集输出信号,设置ADC转换结束标志位为1.为保证程序的正常运行要禁止看门狗,设置PWM信号的频率和死区时间,设置通用定时器1和2的控制寄存器,设置捕获控制寄存器检测下降沿。

  

 

  2 实验结果及其分析

  设交流输入电压220V,输出电压为48V,输出功率为1000W,效率为95%,变换器工作频率为100kHz.

  2.1 单相功率因数校正AC/DC变换器升压电感计算

  Boost升压电感的计算必须是在最差的情况下得到,即输入最低电压,而输出满载的时候来确定,其输入电流:

  

 

  允许的纹波电流一般是取输入电流的20%,即:

  

 

  在最低线电压时最小占空比为:

  

 

  由电磁感应的基本公式推导出临界电感为:

  

 

  因此可取升压电感L=470H.

  2.2 移相全桥软开关变换器滤波输出电容计算

  选择输出电容时,电容的输出电压维持时间非常重要。当输入能量截止时,要求电容电压仍可维持在某特定范围内,输出滤波电容由以下公式计算:

  

[!--empirenews.page--]2.3 仿真结果及分析

 

  为了验证基于DSP控制数字开关电源设计的可行性和参数选择的正确性,利用Pspice软件对图1所示的系统进行仿真,仿真波形图如图6,7所示。图6为输入交流电压和电流仿真波形图,从图6中能清楚的看到输入电流很好跟随交流输入电压,实现了功率因数校正的目的。图7所示为输出电压仿真波形,从图7中可以看到输出为一条比较光滑的48V直流电压。仿真结果跟理论计算的结果完全符合,达到了预期的目的。

  

 

  

 

  2.4 试验结果及分析

  最后,设计了基于TMS320F2812的功率因数校正实验电路,实验结果如图8所示,该图为输入电压和输入电流波形,波形显示了输入电流很好的跟随了输入电压,达到了功率因数校正的目的。实验结果表明在通信开关电源中用数字控制器代替模拟控制器是可行的。

  

 

  3 结语

  数字开关电源相对模拟开关电源,具有不可比拟的优势,如减少电源的体积和重量,提高控制精度以及维修升级方便。

  随着控制理论与实施手段的不断完善以及DSP价格不断的降低,数字控制开关电源将成为今后一个重要的研究方向。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭