当前位置:首页 > 电源 > 电源
[导读]LLC串联谐振转换器(SRC)自问世以来由于其特殊的性能表现,使其成为非常普遍的拓墣,特别是其效率和功率密度远远优于其它的DC-DC转换器拓墣。然而,由于它不包含电感输出滤波器,而在输出级仅需一个电容滤波器,因而

LLC串联谐振转换器(SRC)自问世以来由于其特殊的性能表现,使其成为非常普遍的拓墣,特别是其效率和功率密度远远优于其它的DC-DC转换器拓墣。然而,由于它不包含电感输出滤波器,而在输出级仅需一个电容滤波器,因而不可避免地会在输出电容产生高纹波电流。因此,LLC-SRC可作为高电压和低电流的理想应用,如PDP持续电源。

  当然,它也适用于中电压和中电流应用,如LCD电源,但必需在输出级使用许多并联的极低ESR电容器,以减少输出纹波电压,以及输出电容的电流应力。由于输出电容的高纹波电流可能导致输出电容煺化,并降低DC-DC转换器的使用寿命,最近新开发的两相交错式LLC DC-DC转换器,可望显着地减少输出电容中的输出纹波电流。

  理论上,两相交错作业的输出纹波电流大约为传统转换器的1/5。然而,这并不足以用于极高电流应用,如电动汽车的功率转换器、电池充电器或伺服器电源等等。

  本文在此提出一种新型叁相交错式LLC谐振DC-DC转换器设计。该转换器包含叁个普通LLC谐振DC-DC转换器,每个转换器分别以π/3相位差运作。因此输出电容的纹波电流得以显着减小,并且延长转换器的使用寿命。为了确保所提出转换器的有效性,本文使用1kW(12V/84A) DC-DC转换器塬型进行试验,并展示测试结果,结果证明在低电压和高电流输出条件下该方案的有效性。

  本文提出的电路架构:叁相交错式LLC-SRC的电路图以及等效单相运作的电路图,如图1所示,理论波形如图2所示。两种谐振电路的组成依照负载状态:一种是无负载下由Lr、Lm、和Cr组成,另一种是大量负载下由Lr和Cr组成。因此,需要针对两种不同的谐振频率分别依照以下公式进行分析:

  

  图1: 叁相交错式LLC-SRC。

  

  品质因数(Qs)由以下公式导出:

  

  (3)

  在此处,n=N1/N2,Zr1为fs=fr1时的特性阻抗,Ro=Vo/Io。如果开关频率低于第一个谐振频率fr1时,次级整流器可以进行软换向,那么,反向恢復损耗则可以忽略。在低电压高电流应用条件下输出电容的纹波电流ΔIc将会极高。我们假设Imax - Imin = ΔIc。那么,纹波电流的比例可按以下公式确定:

  

  (4)

  当开关频率fs = fr1,输出电流Io由以下公式导出:

  

  (5)[!--empirenews.page--]

  即使为了确保更长的使用寿命而必须抑制电容的电流应力,LLC-SRC电容纹波电流也必然会很高,因为它的输出滤波器仅包含了电容。然而,如果应用交错控制技术,就可以显着地减少LLC-SRC的输出纹波电流。当开关频率fs与第一个谐振频率fr1相同,非供电时期,图2中的t2~t4则可以被忽略。

  图2:单相运作的理论波形。

  在fs = fr1条件下,计算从单相到六相LLC-SRC交错运行的纹波比。其结果显示以叁相交错运行的纹波电流大约为单相运行的1/11。

  实验结果与结论:为了验证叁相交错式LLC谐振转换器的有效性,我们所进行的实验是使用一个1kW的叁相交错式LLC谐振转换器,其中,输入电压为400V,输出为12V/84A。我们为叁相交错作业建置的控制方案如图3所示,谐振参数如表1所示。图4则显示谐振电流的波形和电容在全负载条件下的纹波电流。不同相位之间的相位差为60°,测量到纹波电流ΔIc为20.4A和%ΔIc 为24.3%。

  

  图3.叁相交错式控制方案。

  

  表1. 谐振参数。

  

  图4. 电容的谐振电流和纹波电流。

  即使因为非供电时期以及谐振电流中的不平衡,所获得的纹波电流比与计算结果不同,但还是验证了透过交错运作可以显着地减少输出电容的纹波电流。因为对于每一转换器的负载状况,DC增益特性必然是不同的,在相位间产生了电流不平衡。因此,需要进一步研究运用相位管理功能的负载共享方法。

  本文提出了多相交错式LLC-SCR及其控制策略。因为透过交错运作可以显着地减少输出纹波电流,这特别适于低电压且高电流的应用,例如伺服器电源系统,而传统的LLC-SRC通常只适用于高电压低电流应用。透过减少电流应力,可以使用一个较小的电容并且可以延长电源的使用寿命。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭