当前位置:首页 > 电源 > 电源
[导读]1-3.反转式串联开关电源1-3-1.反转式串联开关电源的工作原理图1-7是另一种串联式开关电源,一般称为反转式串联开关电源。这种反转式串联开关电源与一般串联式开关电源的区别

1-3.反转式串联开关电源

1-3-1.反转式串联开关电源的工作原理

图1-7是另一种串联式开关电源,一般称为反转式串联开关电源。这种反转式串联开关电源与一般串联式开关电源的区别是,这种反转式串联开关电源输出的电压是负电压,正好与一般串联式开关电源输出的正电压极性相反;并且由于储能电感L只在开关K关断时才向负载输出电流,因此,在相同条件下,反转式串联开关电源输出的电流比串联式开关电源输出的电流小一倍。

在一般电路中大部分都是使用单极性电源,但在一些特殊场合,有时需要两组电源,其中一组为负电源。因此,选用图1-7所示的反转式串联开关电源作为负电源是很方便的。

 

图1-7中,Ui为输入电源,K为控制开关,L为储能电感,D为整流二极管,C为储能滤波电容,R为负载电阻。当控制开关K接通的时候,输入电源Ui开始对储能电感L加电,流过储能电感L的电流开始增加,同时电流在储能电感中也要产生磁场;当控制开关K由接通转为关断的时候,储能电感会产生反电动势,使电流继续流动,并通过整流二极管D进行整流,再经电容储能滤波,然后向负载R提供电流输出。控制开关K不断地反复接通和关断过程,在负载R上就可以得到一个负极性的电压输出。

 

 

 

 

 

 

 

图1-8、图1-9、图1-10分别是控制开关K的占空比D等于0.5、< 0.5、> 0.5时,图1-7电路中几个关键点的电压和电流波形。图1-8-a)、图1-9-a)、图1-10-a)分别为控制开关K输出电压uo的波形;图1-8-b)、图1-9-b)、图1-10-b)分别为储能滤波电容两端电压uc的波形;图1-8-c)、图1-9-c)、图1-10-c)分别为流过储能电感L电流iL的波形。应该特别注意的是,图1-8-c)、图1-9-c)、图1-10-c)中的电流波形按原理应该取负值,但取负值后与前面图1-5与图1-6对比反而觉得不好对比和分析,因此,当进行具体计算时,一定要注意电流和电压的方向。

在开关接通Ton期间,控制开关K接通,电源Ui开始对储能电感L供电,在此期间储能电感L两端的电压eL为:

eL = Ldi/dt = Ui —— K接通期间 (1-19)

对(1-19)式进行积分得:

 

 

式中iL为流过储能电感L电流的瞬时值,t为时间变量;i(0)为的初始电流,即:控制开关K接通瞬间之前,流过储能电感L中的电流。当开关电源工作于临界连续电流状态时,i(0) = 0 ,由此可以求得流过储能电感L的最大电流为:

iLm =Ui/L *Ton —— K关断前瞬间 (1-21)

在开关关断Toff期间,控制开关K关断,储能电感L把电流iLm转化成反电动势,通过整流二极管D继续向负载R提供能量,在此期间储能电感L两端的电压eL为:

eL = Ldi/dt = – Uo —— K关断期间 (1-22)

式中–Uo前的负号,表示K关断期间电感产生电动势的方向与K接通期间电感产生电动势的方向正好相反。对(1-22)式进行积分得:

 

式中i(Ton+)为控制开关K从Ton转换到Toff的瞬间之前流过电感的电流,i(Ton+)也可以写为i(Toff-),即:控制开关K关断或接通瞬间,之前和之后流过电感L的电流相等。实际上(1-23)式中的i(Ton+)就是(1-21)式中的iLm,即:

i(Ton+) = iLm —— K关断前瞬间 (1-24)

因此,(1-9)式可以改写为:

iL =( Uo/L) *t + iLm —— K关断期间 (1-25)

当t = Toff时iL达到最小值。其最小值为:

iLX = (Uo/L)*Toff + iLm —— K接通前瞬间 (1-26)

反转式串联开关电源输出电压一般为负脉冲的幅值。当开关电源工作于临界连续电流状态时,流过储能电感的初始电流i(0)等于0(参看图1-8-a)),即:(1-26)式中流过储能电感电流的最小值iLX等于0。因此,由(1-21)和(1-26)式,可求得反转式串联开关电源输出电压Uo为:

 

 

由(1-27)式可以看出,反转式串联开关电源输出电压与输入电压与开关接通的时间成正比,与开关关断的时间成反比。

另外,从图1-8可以看出,由于反转式串联开关电源,仅当控制开关K关断期间才产生反电动势向负载提供能量。因此,当占空比为0.5时,输出电流的平均值Io为流过储能电感电流最大值的四分之一;当占空比小于0.5时,输出电流的平均值Io小于流过储能电感电流最大值的四分之一(图1-9);当占空比大于0.5时,输出电流的平均值Io大于流过储能电感电流最大值的四分之一(图1-10)。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭