开关电源原理与设计(连载十九)反激式变压器开关电源
扫描二维码
随时随地手机看文章
顺便指出,在控制开关K关断的Toff期间,变压器铁心中的磁通主要由变压器次级线圈回路中的电流来决定,这就相当于流过变压器次级线圈中的电流所产生的磁场可以使变压器的铁心退磁,使变压器铁心中的磁场强度恢复到初始状态。
由于控制开关突然关断,流过变压器初级线圈的励磁电流突然为0,此时,流过变压器次级线圈中的电流就正好接替原来变压器初级线圈中励磁电流的作用,使变压器铁心中的磁感应强度由最大值Bm返回到剩磁所对应的磁感应强度Br位置,即:流过N3绕组电流是由最大值逐步变化到0的。由此可知,反激式变压器开关电源在输出功率的同时,流过次级线圈回路中的电流也在对变压器铁心进行退磁。
图1-20是反激式变压器开关电源,工作于临界连续电流状态时,整流输入电压uo、负载电流Io,变压器铁芯的磁通,以及变压器初、次级电流等波形。
图1-20-a)中,变压器次级线圈输出电压uo是一个带正负极性的脉冲波形,一般负半周是一个很规整的矩形波;而正半周,由于输出脉冲被整流二极管限幅,当开关电源工作于连续电流或临界连续电流状态时,输出波形基本也是矩形波。因此,整流二极管的输入电压uo的正半周幅度与输出电压Uo或储能滤波电容的两端电压基本相同。因此,整流二极管的输入电压uo的幅值Up与半波平均值Upa以及整流输出电压Uo均基本相等。
图1-20-b)是变压器铁芯中磁通量变化的过程,在控制开关接通期间,变压器铁芯被磁化;在控制开关关断期间,变压器铁芯被退磁。因此,在Ton期间,变压器铁芯中的磁通量是由剩磁S•Br向最大磁通S•Bm方向变化;而在Toff期间,变压器铁芯中的磁通量是由最大磁通S•Bm向剩磁S•Br方向变化。
图1-20-c),是反激式变压器开关电源工作于临界电流状态时,变压器初、次级线圈的电流波形。图中,i1为流过变压器初级线圈中的电流,i2为流过变压器次级线圈中的电流(虚线所示),Io是流过负载的电流(虚线所示)。在控制开关接通期间,变压器铁芯被初级线圈电流磁化;在控制开关关断期间,变压器铁芯被被次级线圈电流退磁,并向负载输出电流。从图1-20-c)还可以看出,流过变压器初、次级线圈中的电流是可以突跳的。在控制开关关断的一瞬间,流过变压器初级线圈的电流由最大值跳变到0,而在同一时刻,流过变压器次级线圈的电流由0跳变到最大值。并且,变压器初级线圈电流的最大值正好等于变压器次级线圈电流最大值的n倍(n为变压器次级电压与初级电压比)。
顺便指出:(1-110)的结果,虽然是以开关电源工作于临界连续电流状态的条件求得,但对于开关电源工作于连续电流状态或断流状态也同样成立,因为,在储能滤波电容的容量足够大的情况下,输出电压Uo只取决于其峰值电压Up,而不是取决于其平均值。
当开关电源工作于电流不连续状态时,即:控制开关的占空比减小时,(1-100)式中的i(0)和(1-108)式中的i2x均为0 ,并且在控制开关关断期间还没结束前,流过变压器次级线圈的电流就已降到0,这相当于开关电源输出电压和输出电流都要降低,在此种情况下,开关电源将会向负载降低功率输出。
当开关电源工作于连续电流状态时,即:控制开关的占空比增大时,(1-100)式中的i(0)不能为0,(1-108)式中的i2x也不能为0 ,这相当于输出电压和输出电流都相应增加,在此种情况下,开关电源将会向负载提供更大的功率输出。
图1-21是反激式变压器开关电源,工作于电流不连续状态时,整流二极管的输入电压uo,负载电流Io和变压器铁芯中的磁通,以及变压器初、次级电流等波形。
图1-22是反激式变压器开关电源,工作于连续电流状态时,整流二极管的输入电压uo、负载电流Io和变压器铁芯中的磁通,以及变压器初、次级电流等波形。
由此可知,反激式变压器开关稳压电源就是通过改变控制开关的占空比来调节开关电源的输出电压和对储能滤波电容的充、放电电流来达到稳定电压输出的。
这里还需特别指出:上面分析全部都是假定开关电源输出电压Uo相对不变情况下的结果,实际上,当于开关电源刚开始工作的时候,即:储能滤波电容刚开始充电的时候,开关电源输出电压Uo也是在变化的,但输出电压很快就由某个初始值过渡到某个稳定值,然后又由某个初始值(上一个稳定值)又过渡到下一个稳定值……。因此,我们把开关电源电路中,电压或电流由某个初始值过渡到某个稳定值的过程,称为开关电源电路的过渡过程。