当前位置:首页 > 电源 > 电源
[导读]逆变器电路图—最简单12v变220v逆变器以下是一款较为容易制作的逆变器电路图,可以将12V直流电源电压逆变为220V市电电压,电路由BG2和BG3组成的多谐振荡器推动,再通过BG1和

逆变器电路图—最简单12v变220v逆变器

以下是一款较为容易制作的逆变器电路图,可以将12V直流电源电压逆变为220V市电电压,电路由BG2和BG3组成的多谐振荡器推动,再通过BG1和BG4驱动,来控制BG6和BG7工作。其中振荡电路由BG5与DW组的稳压电源供电,这样可以使输出频率比较稳定。在制作时,变压器可选有常用双12V输出的市电变压器。可根据需要,选择适当的12V蓄电池容量。

逆变器电路图—TL494逆变器电路

TL494芯片400W逆变器电路图

变压器功率为400VA,铁芯采用45&TImes;60mm2的硅钢片。初级绕组采用直径1.2mm的漆包线,两根并绕2&TImes;20匝。次级取样绕组采用0.41mm漆包线绕36匝,中心抽头。次级绕组按230V计算,采用0.8mm漆包线绕400匝。开关管VT4~VT6可用60V/30A任何型号的N沟道MOS FET管代替。VD7可用1N400X系列普通二极管。该电路几乎不经调试即可正常工作。当C9正极端电压为12V时,R1可在3.6~4.7kΩ之间选择,或用10kΩ电位器调整,使输出电压为额定值。如将此逆变器输出功率增大为近600W,为了避免初级电流过大,增大电阻性损耗,宜将蓄电池改用24V,开关管可选用VDS为100V的大电流MOS FET管。

需注意的是,宁可选用多管并联,而不选用单只IDS大于50A的开关管,其原因是:一则价格较高,二则驱动太困难。建议选用100V/32A的2SK564,或选用三只2SK906并联应用。同时,变压器铁芯截面需达到50cm2,按普通电源变压器计算方式算出匝数和线径,或者采用废UPS-600中变压器代用。如为电冰箱、电风扇供电,请勿忘记加入LC低通滤波器。利用TL494组成的400W大功率稳压逆变器电路。它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。

基于TL494打造的50HZ正弦波逆变电路

基于TL494做的220伏标准50HZ方波逆变器

逆变器电路图—555作逆变器

555作逆变器电路一:简易高频逆变器电路

555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。它内部包括两个电压比较器,三个等值串联电阻,一个RS触发器,一个放电管T及功率输出级。它提供两个基准电压VCC/3和2VCC/3。

555作逆变器电路二:家用逆变器电路

工作原理电路见图1。当把开关K1打向“逆变”位置时,BG1导通,由时基电路NE555及外围元件组成的无稳态多谐振荡器开始振荡,其充、放电时间常数可调节。如果选择R1=R2,则输出脉冲的占空比为50%,该多谐振荡器的振荡频率f=1,443/(R1+R2+2W)C2,图中的元件数值可使振荡频率调在50Hz,振荡脉冲由役脚输出,波形为方波,该方波经C4耦合,R3、C5积分变为三角波,这个三角波又经R4、C6,第二次积分和R5、C7第三次积分,变为近似的正弦波,通过C8耦合到BG2,由BG2放大后在B1的L2线圈上输出。当L2上端电压为正时,D4截止,D3导通,使BG4、BG6截止,BG3、BG5导通,电流由电瓶正极-B2的L1-BG5-电瓶负极;当L2上端电压为负时,D3截止,D4导通,使BG3、BG5截止,BG4、BG6导通,电流由电瓶正极-B2的L2-BG6一电瓶负极。BG5、BG6交替导通、截止,经变压器B2合成正负对称的正弦波,并由L3升压送至逆变输出插座CZ1、CZ2,供用电器使用,同时LED1(红色)亮,指示逆变状态。

当开关打向“充电”位置时,市电经变压器B2降压、D5、D6全波整流、R11限流后对电瓶充电,同时LED2(绿色)亮,指示充电状态。

555作逆变器电路三:典型逆变器电路

如图是由NE555等构成的逆变器电路,它将蓄电池的十12V直流电压变换为220V的交流输出电压。电路中,NE555为振荡电路,振荡频率由R1、RP1的阻值和C1决定,调节RP1的阻值,使其为50HZ。NE555的3脚输出脉冲信号,一路直接加到VT2的基极,另一路经VT11反相器加到VT1的基极,VT1,和VT2得到相位差180°的脉冲电压,该脉冲电压经VT1和VT2进行整形,再经VT3和VT4进行脉冲放大,驱动由VT5、VT7、VT8和VT6、VT9、VT10构成的功率放大器。功率放大器开关工作可将+12V电池电压变换为方波电压,该电压经升压变压器T1变为220V的方波交流输出电压。VD1和VD2为浪涌吸收二极管,VT12,等为阻止电池过放电的电路,78M06为NE555提供+6V稳定的工作电压。

逆变器电路图—纯正弦波逆变器

纯正弦波逆变器电路图一

下图为前级电路图,此电路采用了光藕隔离反馈,工作在准闭环模式。轻载或者空载时,由于变压器漏感,输出可能超压,容易穿后级和电容。此时占空比减小输出降低,当负载变大后,电路逐渐进入开环模式,以确保足够的电压和功率输出。

纯正弦波逆变器电路图二

下图为后级电路图

本电路优点:

1.电路极简单,可能为世界上最简单的分立SPWM电路

2.单电源宽电压供电(10V-30V)

3.输出最大占空比高,仿真时最大占空比已经接近100%.这将导致母线电压利用率高,母线电压340V就足够产生230V的工频正弦交流电。

4.隔离输出,受外围电路干扰少。

如图,LM7809将电池电压降为稳定的9V,这使得电路可以在宽电源(10V-30V)情况下工作,左上角红圈里的2N5551和2N5401等元件组成了虚拟双电源,将正9V变成正负4.5V的双电源。

NE555及周边元件组成频率约为20KHz的高线形度三角波振荡器,如图,在NE555的2和6脚可以得到在3V和6V之间运动的三角波。

IC1为LM324,IC1A及周边元件组成50Hz工频正弦振荡器,产生幅度4.5V的正弦波(对于产生的虚地),圈一电位器将这个正弦波幅度分压到3.5V.IC1B和IC1C及周边元件组成精密整流电路,将正弦波变成3V幅值的馒头波。这个馒头波要去和NE555的三角波比较,三角波和馒头波的幅值虽然向同,都是3V,但是这个馒头波的最低电位比三角波的高1.5V.因此,IC1D及周边元件组成减法电路,将馒头波整体下调1.5V,这样三角波和馒头波就可以比较了.LM393B进行比较工作,产生同相位的SPWM波,此波与LM393A组成的正弦波-方波转换器输出的同步方波送入CD4081等组成的编码电路进行编码,产生最终驱动功率管的SPWM信号。两个20K电阻和47P电容用于产生死区于高频臂.SPWM1和SPWM2用于驱动高频臂,50HZ1和50HZ2用于驱动工频臂。

本电路设计巧妙的地方之一就是虚地和实地的转换.LM393A之前电路是工作在虚地状态的,而LM393之后的电路却变成了实地。因为4.5V的交流(对于虚地)对于实地来说是个9V的脉冲.LM393B周边电路也是类似原理。

纯正弦波逆变器电路图三

下图就是全硬件纯正弦波逆变器的H桥电路图。

下臂的IRFP460采用光藕直接驱动,上臂的IRFP460采用自举电容+光藕驱动。工作原理简述:当下臂导通时,高频桥的功率管的中点相当于接地,此时220uF的自举电容通过FR107和下臂管充电,当下臂管关断上臂导通时,220uF电容与地隔离,当TLP250内部三极管导通后,相当于给上臂管的GS之间施加一个电压,因此上臂管可以在与之对应TLP250的控制下导通和关断。

1mH电感和一个400V 1uF电容用来完成高频滤波的任务,把高频SPWM方波变成50Hz的正弦波。

纯正弦波逆变器电路图四

单片机制作的纯正弦波逆变电源电路

逆变器电路图—正弦波逆变器

以上是一款高效率的正弦波逆变器电器图,该电路用12V电池供电。先用一片倍压模块倍压为运放供电。可选取ICL7660或MAX1044。运放1产生50Hz正弦波作为基准信号。运放2作为反相器。运放3和运放4作为迟滞比较器。其实运放3和开关管1构成的是比例开关电源。运放4和开关管2也同样。它的开关频率不稳定。在运放1输出信号为正相时,运放3和开关管工作。这时运放2输出的是负相。这时运放4的正输入端的电位(恒为0)总比负输入端的电位高,所以运放4输出恒为1,开关管关闭。在运放1输出为负相时,则相反。这就实现了两开关管交替工作。

当基准信号比检测信号,也即是运放3或4的负输入端的信号比正输入端的信号高一微小值时,比较器输出0,开关管开,随之检测信号迅速提高,当检测信号比基准信号高一微小值时,比较器输出1,开关管关。这里要注意的是,在电路翻转时比较器有个正反馈过程,这是迟滞比较器的特点。比如说在基准信号比检测信号低的前提下,随着它们的差值不断地靠近,在它们相等的瞬间,基准信号马上比检测信号高出一定值。这个“一定值”影响开关频率。它越大频率越低。这里选它为0.1~0.2V。

C3,C4的作用是为了让频率较高的开关续流电流通过,而对频率较低的50Hz信号产生较大的阻抗。C5由公式:50=算出。L一般为70H,制作时最好测一下。这样C为0.15μ左右。R4与R3的比值要严格等于0.5,大了波形失真明显,小了不能起振,但是宁可大一些,不可小。开关管的最大电流为: I==25A。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭