当前位置:首页 > 电源 > 电源
[导读]小功率电源被广泛地应用于电子电气行业,在应用的过程中也时常出现一些电源故障,如启机不良、输出电压偏低、模块过热等问题,针对这些电源供电故障现象,如何定位背后的问题?本文将一一为您揭晓。

小功率电源被广泛地应用于电子电气行业,在应用的过程中也时常出现一些电源故障,如启机不良、输出电压偏低、模块过热等问题,针对这些电源供电故障现象,如何定位背后的问题?本文将一一为您揭晓。

目前,市场上电源模块种类繁多,不同电源产品的输入电压、输出功率、功能及拓扑结构等都各不相同,其特点都是为微控制器、集成电路、数字信号处理器、模拟电路、及其他数字或模拟等负载供电。电源模块的可靠性比较高,但也可能会发生故障,下面以致远电子的DC-DC电源为例分析几种常见的电源故障。

 

 

一、输出电压偏低

电源输出电压过低,会让后级电路无法正常工作,如在微控制器系统中,负载突然增大,会拉低微控制器的供电电压,而造成微控制器复位,这会对整个系统级的电路带来毁灭性的打击,会造成一子落错全盘毁的连锁式反应。输出电压过低通常是由那些原因造成的呢?

l输出级并联多个负载,在正常工作后,有负载需要较大的瞬态电流,造成电压被瞬间拉低,从而影响其它并联的负载;

l输出线路过长或过细,造成线损过大,从而在线路间产生了不小的压降,最终导致电源模块的输出电压到真正的负载两端时,电压偏低;

l防反接二极管的压降过大,一般二极管的正向压降在0.2~0.6V之间,如果电源模块输出的是5V电压,那么高导通压降的二极管所产生的电压降就会使后级电路的电压偏低,从而不能正常工作;

l模块外围电路中的输入滤波电感过大,导致内阻变大,电流扼制作用增强,当后级负载突然变重时,电流供应不上而导致负载两端的电压偏低。

 

 

解决方法:

1)在输出端并一个大电容或换用更大功率输入电源;

2)调整布线,增大导线截面积或缩短导线长度,减小内阻,如果其电源模块有Trim功能调节,可以调高输出电压来抵消线损产生的压降;

3)换用导通压降小的二极管;

4)减小滤波电感值且降低电感的内阻。

二、输入电压偏高

由于某些电源模块内部的电子元器件的电压余量设计不够,在输入电压过高时,造成模块损坏,甚至烧毁,这是就需要我们在外围做一些保护,哪些常见原因易造成输入电压偏高呢?

l在电源模块输入端进行热插拔上电,此时其电压尖峰及浪涌电流都较高,抗压差的模块会被瞬间击穿损坏;

l输出端负载过轻,轻于10%的额定负载,对一些非线性稳压的电源产品来说,模块不一定会损坏,但会影响后级的一些性能,如效率偏低,模块偏热等;

l前级供电电源的电压冲击导致输入电压偏高或产生干扰电压,电磁兼容也较容易造成输入电压高,如雷击浪涌、群脉冲

解决方法:

1)确保输出端不小于少10%的额定负载,若实际电路工作中常有空载现象,就在输出端并接一个额定功率10%的假负载;

2)更换一个合理且稳定范围的输入电压源,存在干扰电压时要考虑在输入端并上TVS管或稳压管,也可加EMC的外围电路。

三、模块发热严重

电源模块在电压转换过程中有能量损耗,产生热能导致模块发热,降低电源的转换效率,影响电源模块正常工作,但什么情况下会造成电源模块发热较严重呢?

l使用的是线性电源模块,由于线性电源内部的电路结构使得其功率导通压降大,在相同的输出功率下,线性电源模块内部产生的损耗更大;

l负载过流,超出数据手册应用范围使得内部关键器件温度飙升;

l环境温度过高或散热不良。

l其他大发热源热传递

热成像仪观测发热电源模块E7805OS-500在标称电压下的温度分布,如图2所示:

 

 

解决方法:

1)使用线性电源时要加散热片,或选择效率高的开关电源;

2)换输出功率更大的模块,确保有70%~80%的负载降额;

3)降低环境温度,保持散热良好。

四、输出噪声较大

噪声是衡量电源模块优劣的一大关键指标,在应用电路中,模块周边元器件的设计布局等也会影响输出噪声,哪些因素对输出噪声有较大影响呢?

l电源模块与主电路噪声敏感元件距离过近;

l主电路噪声敏感元件的电源输入端处未接去耦电容;

l多路系统中各单路输出的电源模块之间产生差频干扰;

l地线处理不合理;

l电源模块输入端的噪声过大,未处理,直接耦合到电源模块输出端;

ZDS2024示波器测试对比模块受到干扰与未被干扰的电源模块输出纹波噪声,对比下图如图3所示:

 

 

未受外界干扰的纹波噪声,Vz=104mV

 

 

未受外界干扰的纹波噪声,Vz=734mV

解决方法:

1)将电源模块尽可能远离主电路噪声敏感元件或模块与主电路噪声敏感元件进行隔离;

2)主电路噪声敏感元件(如:A/D、D/A或MCU等)的电源输入端处接0.1μF去耦电容;

3)使用一个多路输出的电源模块代替多个单路输出模块消除差频干扰;

4)采用远端一点接地、减小地线环路面积。

五、电源模块启动困难

在电源的应用电路中,经常会出现电源模块输出端电压不正常,输出端就是没有任何输出,电源模块也无损坏,是什么原因呢?或许是电源模块本身就无法启动?

l外接电容过大(即容性负载过大),需要充电的时间变长,有些电源模块在规定时间内不能建立好输出电压,就会进入过流保护,从而模块无输出;

l电子负载在CC模式下也会造成部分启动能力弱的电源模块启机不良,由于在CC模式下启机的时候,其模拟的负载趋近于零,且反应调节时间相对较长,绝大多数的电源模块应用的环境属于纯电阻模式;

l负载需要的电流过大,而电源模块单位输出的最大平均电流不够导致模块无法启动;

l输入线路过长,使得线路之间产生的压降过大,而导致输入电压低于模块输入电压的下限要求;

解决方法:

1)外接电容过大,在电源模块启动时向其充电时间较长,难以启动,需要选择合适的容性负载;

2)模块测试尽量选择更接近纯阻模式负载测试;

3)选择功率合适的电源模块;

4)先测试电源模块输入端引脚电压是否低于数据手册要求的最低电压,再根据实际情况提高电源输入端的电压。

六、耐压不良

一般隔离电源模块的耐压值可高达几千伏,但在应用电路中,哪些因素会导致其耐压能力降低?

l选用的模块隔离电压值不够,往往是应用工程师评估的耐压值比在实际应用环境下的耐压值低造成的;

l维修中多次使用回流焊、热风枪;

l外围电路布线与器件放置时未按安规相关的爬电距离来要求,也会造成耐压不良。

用耐压仪测试电源模块隔离电压的方法如图5所示:

 

 

解决办法:

1)根据现场环境的实际评估值来选取耐压值合适电源模块,最好能预留500V以上的余量;

2)焊接电源模块时要选取合适的温度,避免反复焊接,损坏电源模块;

3)严格按照安规规定的要求布置输入与输出之间的线路后器件。

七、总结

电源模块故障问题种类繁多,小编针对以上几种常见的应用型故障问题,浅浅而谈,以作抛砖引玉。

致远电子拥有近二十年的研发经验,可以提供多种负压产生方案的选择。隔离1000VDC、1500VDC、3000VDC及6000VDC等多个系列,封装形式多样,兼容国际标准的SIP、DIP等封装。同时致远电子为保证电源产品性能建设了行业内一流的测试实验室,配备最先进、齐全的测试设备,全系列隔离DC-DC电源通过完整的EMC测试,静电抗扰度高达4KV、浪涌抗扰度高达2KV,可应用于绝大部分复杂恶劣的工业现场,为用户提供稳定、可靠的电源隔离解决方案。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭