当前位置:首页 > 电源 > 电源
[导读]  目前比较流行的低成本、超小占用空间方案设计基本都是采用PSR原边反馈反激式,通过原边反馈稳压省掉电压反馈环路(TL431和光耦)和较低的EMC辐射省掉Y电容,不仅省成本

  目前比较流行的低成本、超小占用空间方案设计基本都是采用PSR原边反馈反激式,通过原边反馈稳压省掉电压反馈环路(TL431和光耦)和较低的EMC辐射省掉Y电容,不仅省成本而且省空间,得到很多电源工程师采用。

  下面结合实际来讲讲我对PSR原边反馈开关电源设计的“独特”方法——以实际为基础。

  要求条件:

  全电压输入,输出5V/1A,符合能源之星2之标准,符合IEC60950和EN55022安规及EMC标准。因充电器为了方便携带,一般都要求小体积,所以针对5W的开关电源充电器一般都采用体积较小的EFD-15和EPC13的变压器,此类变压器按常规计算方式可能会认为CORE太小,做不到,如果现在还有人这样认为,那你就OUT了。

  磁芯以确定,下面就分别讲讲采用EFD15和EPC13的变压器设计5V/1A5W的电源变压器。

  1.EFD15变压器设计

  目前针对小变压器磁芯,特别是小公司基本都无从得知CORE的B/H曲线,因PSR线路对变压器漏感有所要求。

  所以从对变压器作最小漏感设计入手:

  已知输出电流为1A,5W功率较小,所以铜线的电流密度选8A/mm2,

  次级铜线直径为:SQRT(1/8/3.14)*2=0.4mm。

  通过测量或查询BOBBIN资料可以得知,EFD15的BOBBIN的幅宽为9.2mm。

  因次级采用三重绝缘线,0.4mm的三重绝缘线实际直径为0.6mm。

  为了减小漏感把次级线圈设计为1整层,次级杂数为:9.2/0.6mm=15.3Ts,取15Ts。

  因IC内部一般内置VDS耐压600~650V的MOS,考虑到漏感尖峰,需留50~100V的应力电压余量,所以反射电压需控制在100V以内,

  得:(Vout+VF)*n<100,即:n<100/(5+1),n<16.6,

  取n=16.5,得初级匝数NP=15*16.5=247.5

  取NP=248,代入上式验证,(Vout+VF)*(NP/NS)<100,

  即(5+1)*(248/15)=99.2<100,成立。

  确定NP=248Ts.

  假设:初级248Ts在BOBBIN上采用分3层来绕,因多层绕线考虑到出线间隙和次层以上不均匀,需至少留1Ts余量(间隙)。

  得:初级铜线可用外径为:9.2/(248/3+1)=0.109mm,对应的实际铜线直径为0.089mm,太小(小于0.1mm不易绕制),不可取。

  假设:初级248Ts在BOBBIN上采用分4层来绕,初级铜线可用外径为:9.2/(248/4+1)=0.146mm,对应的铜线直径为0.126mm,实际可用铜线直径取0.12mm。

  IC的VCC电压下限一般为10~12V,考虑到至少留3V余量,取VCC电压为15V左右,

  得:NV=Vnv/(Vout+VF)*NS=15/(5+1)*15=37.5Ts,取38Ts。

  因PSR采用NV线圈稳压,所以NV的漏感也需控制,仍然按整层设计,

  得:NV线径=9.2/(38+1)=0.235mm,对应的铜线直径为0.215mm,实际可用铜线直径取0.2mm。也可采用0.1mm双线并饶。

  到此,各线圈匝数就确定下来了。

  绕完屏蔽后,保TAPE1层;

  再绕初级,按以上计算的分4层绕制,完成后包TAPE1层;

  为减小初次级间的分布电容对EMC的影响,再用0.1mm的线绕一层屏蔽,包TAPE1层;

  再绕次级,包TAPE1层;

  再绕反馈,包TAPE2层。

  可能有人会说:怎么没有计算电感量?因前面说了,CORE的B/H不确定,所以得先从确定饱和AL值下手。

  把变压器CORE中柱研磨一点,然后装上以上方式绕好的线圈装机,并用示波器检测Rsenes上的波形,见下图中R5。

  输入AC90V/50Hz,慢慢加载,观察CORE有没有饱和,如果有饱和迹象,拆下再研磨……直到负载到1.1~1.2A刚好出现一点饱和迹象。(此波形需把波形放大到满屏观察最佳)

  OK,拆下变压器测量电感量,此时所测得的电感量作为最大值依据,再根据厂商制造能力适当留+3%~+5%的误差范围和余量,如:测量为2mH,则取2-2*0.05=1.9mH,误差为+/-0.1mH。

  现在再来验证以上参数变压器BOBBIN的绕线空间。

  已知:E1和E2铜线直径为0.1mm,实际外径为0.12mm;

  NP铜线直径为0.12mm,实际外径为0.14mm;

  NS铜线直径为0.4mm,实际外径为0.6mm;

  TAPE采用0.025mm厚的麦拉胶纸。

  A.

  NV若采用铜线直径为0.2mm,实际外径为0.22mm

  线包单边厚度为:E1+TAPE+NP+TAPE+E2+TAPE+NS+TAPE+NV+TAPE

  =0.12+0.025+0.14*4+0.025+0.12+0.025+0.6+0.025+0.22+0.025*2=1.77mm.

  B.

  NV若采用铜线直径为0.1mm双线并饶,实际外径为0.12mm

  线包单边厚度为:E1+TAPE+NP+TAPE+E2+TAPE+NS+TAPE+NV+TAPE

  =0.12+0.025+0.14*4+0.025+0.12+0.025+0.6+0.025+0.12+0.025*2=1.67mm.

  测量或查EFD15的BOBBIN的单边槽深为2.0mm,所以以上2种方式绕制的变压器都可行。

  2.EPC13的变压器设计

  依然沿用以上设计方法,测量或查BOBBIN资料可得EPC13BOBBIN幅宽为6.8mm,

  次级匝数为:6.8/0.6=11.3Ts,取11Ts.

  初级匝数为:11*16.5=181.5Ts,取182Ts.

  反馈匝数为:15/(5+1)*11=27.5Ts,取28Ts.

  EPC13的绕线方式同EFD15,在这里就不再重复了。

  以上变压器设计出的各项差数是以控制漏感为出发点的,各项参数(肖特基的VF,MOS管的电压应力余量……)都是零界或限值,实际设计中会因次级绕线同名端对应输出PIN位出现交叉,或输出飞线套铁氟龙套管,或供应商的制程能力,都会使次级线圈减少1~2圈,对应的初级和反馈也需根据匝比减少圈数;另,目前市场的竞争导致制造商把IC内置MOS管的VDS耐压减小一点来节省成本,为保留更大的电压应力余量,需再减少初级匝数;以上的修改都会对EMC辐射造成负面影响,对应的取舍还需权衡,但前提是必须使产品工作在DCM模式。

  从08年市场上推出PSR原边反馈方案到现在我一直都有在用此方案设计产品,回顾看看,市场上也出现了很多不同品牌的PSR方案,但相对以前刚推出的PSR控制IC来说,有因市场反映不良而不断改进的部分,但也有因为恶性竞争而COSTDOWN的部分。主要讲讲COSTDOWN的部分。

  因受一些品牌在IC封装工艺上的专利限制,所以目前大部分的内置MOS的IC(不仅是PSR控制IC,也包括PWM控制IC)采用的是在基板上置入控制晶圆和MOS晶圆,之间用金线作跳线连接,这样就有2个问题产品了:

  1.金线带来的EMC辐射。

  2.研制控制晶圆的公司可以自己控制控制晶圆的成本,但MOS晶圆一般采用的从MOS晶圆生产上购买,这样一来,MOS晶圆的成本控制也成为IC成本控制的案上肉。

  辐射可以采用优化设计来控制。

  但MOS晶圆的COSTDOWN的路径来源于降低其VDS的耐压,目前已有很多不同品牌的IC将VDS为650V的内置MOS降到620~630V,甚至560~600V。这样一来,只控制漏感降低VDS峰值电压是不够的,所以还需为VDS保留更大的电压应力余量。

  下面再以EPC13为实例,讲讲优化设计后的变压器设计。

  方法同上,先计算出次级,因考虑到输出飞线套铁氟龙套管或输出线与BOBBINPIN位交叉,所以需预留1匝空间,得:次级匝数为:6.8/0.6-1=10.3,取10Ts.

  再计算初级匝数,因考虑到为MOS管留更大的电压应力余量,所以反射电压取之前的75%

  得:(Vout+VF)*n<100*75%

  输出5V/1A,采用2A/40V的肖特基即可,2A/40V的肖特基其VF值一般为0.55V。

  代入上式得:n<13.51,

  取13.5,得NP=10*13.5=135Ts.

  代入上式验证(5+0.55)*(135/10)=74.925<75,成立。

  确定NP=135Ts.

  下面再计算反馈匝数,

  依然取反馈电压为15V,

  得,15/(5+0.55)*10=27Ts.

  下面来确定绕线顺序。

  因要工作在DCM模式,且采用无Y设计,DI/DT比较大,变压器磁芯研磨气隙会产生穿透力强杂散磁通导致线圈测试涡流,影响EMC噪音,所以需先在BOBBIN上采用0.1mm直径的铜线绕满一层作为屏蔽,且引出端接NV的地线。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭