当前位置:首页 > 芯闻号 > 音频视频电路
[导读]LM386构成的音频放大电路图每个人的心中都有那么一块芯片,你对它了如指掌,典型应用电路烂熟于胸,一旦出现了某种需求立刻就能想到它,虽然它可能早已不是完成任务的最佳选择,但是你总是割舍不下它,这就是情怀。不

LM386构成的音频放大电路图

每个人的心中都有那么一块芯片,你对它了如指掌,典型应用电路烂熟于胸,一旦出现了某种需求立刻就能想到它,虽然它可能早已不是完成任务的最佳选择,但是你总是割舍不下它,这就是情怀。不同的人有不同的答案,但是对于模拟音频放大领域,这块芯片就是LM386。

 

LM386作为一片元老级芯片,一直在产生的原因就在于其过硬的设计思路。

 

图2 LM386内部结构

图2 LM386内部结构

第一级为差分放大电路,T1和T2、T3和T4分别构成复合管,作为差分放大电路的放大管;T5和T6组成镜像电流源作为T1和T3的有源负载;差分输入信号分别从T1和T3管的基极输入,从T4管的集电极输出,为双端输入单端输输出差分电路。采用电流源作有源负载,可使单端输出电路的增益近似等于双端输出的增益。

第二级为共射放大电路,T7为放大管,采用恒流源作有源负载,以提高本级的电压放大倍数。

第三级中的T8和T9复合成PNP型管,与NPN型管T10构成准互补输出级。二极管D1和D2为输出级提供合适的偏置电压,可以消除交越失真。

引脚2为反相输入端,引脚3为同相输入端。电路采用单电源供电,故为OTL电路。输出端(引脚5)需要通过电容连接负载。

电阻R7从输出端连接到T4的发射极,形成反馈通路,并与R5和R6构成反馈网络,构成深度电压串联负反馈,稳定整个电路的电压增益。

LM386特性

静态功耗低,约为4mA,可用于电池供电

工作电压范围宽,4-12V or 5-18V

外围元件少

电压增益可调,20-200dB

低失真度

 

图3 由LM386构成的音频放大电路

图3 由LM386构成的音频放大电路

由LM386可以很方便地构成音频放大电路,图4电路所需的元件最少,电压增益为20dB,图5所示电路的电压增益最高可达200dB。

 

图4 放大器增益=20(最少元件)

图4 放大器增益=20(最少元件)

 

图4 放大器增益=20(最少元件)

图5 放大器增益=200

根据数据手册,LM386的工作电压为4-12V或5-18V(LM386N-4),静态消耗电流为4mA,电压增益为20-200dB。在1、8脚开路时,带宽为300KHz;输入阻抗为50千欧,音频功率0.5W。尽管LM386的应用非常简单,但稍不注意,特别是器件上电、断电瞬间,甚至工作稳定后,一些操作(如插拔音频插头、旋音量调节钮)都会带来的瞬态冲击,在输出喇叭上都会产生非常讨厌的噪声。

通过接在1脚、8脚间的电容(1脚接电容+极)来改变增益,断开时增益为20dB。因此用不到大的增益,电容就不要接了,不光省了成本,还会减少噪音。

PCB设计时,所有外围元件尽可能靠近LM386,地线尽可能粗一些,输入音频信号通路尽可能平行走线,输出亦如此。

选好调节音量的电位器,质量太差的不要,否则受害的是耳朵;阻值不要太大,10K最合适,太大也会影响音质,转那么多圈圈,烦!

尽可能采用双音频输入/输出。好处是:“+”、“-”输出端可以很好地抵消共模信号,能有效抑制共模噪声。

第7脚(BYPASS)的旁路电容不可少,实际应用时,BYPASS端需外接一个电解电容到地,起滤除噪声的作用。工作稳定后,该管脚电压值约等于电源电压的一半。增大这个电容的容值,减缓直流基准电压的上升、下降速度,有效抑制噪声。在器件上电、掉电时的噪声就是由该偏置电压瞬间跳变所致,这个电容可千万别省啊!

减少输出耦合电容。此电容的作用是:隔直+耦合。隔断直流电压,直流电压过大有可能会损坏喇叭线圈;耦合音频的交流信号。它与扬声器负载构成了一阶高通滤波器。减小该电容值,可使噪声能量冲击的幅度变小、宽度变窄;太低还会使截止频率(fc=1/(2π*RL*Cout))提高。测试发现10uF/4.7uF较为合适。

有很多设计好的LM386练习套件和模块,资金富裕的同学可以考虑购买一套,仔细研究一下。电路很简单,但模拟电路调整还是有些难度,需要一定的经验积累,初学者值得练练。

LM386的输出接扬声器,如果手边没有可以淘宝查查,价格从几角钱到几元钱的都有,输入可以接各种音源,也可以自己利用驻极麦克风做输入信号。如果有条件,建议用信号发生器做输入,用示波器观察输入和输出的波形,查看电路的放大倍数和信号的失真程度。

驻极体麦克风由声电转换和阻抗变换两部分组成。声电转换的关键元件是驻极体振动膜。它是一片极薄的塑料膜片,在其中一面蒸发上一层金属薄膜。然后再经过高压电场驻极后,两面分别驻有异性电荷。膜片的蒸金面向外,与金属外壳相连通。在驻极体话筒中,有一只场效应管做预放大,因此驻极体话筒在正常工作时,需要一定偏置电压,这个偏置电压一般情况下不大于10V。

 

图4 放大器增益=20(最少元件)

图7 驻极体麦克风

 

图8 驻极体麦克风电路连接

图8 驻极体麦克风电路连接

对于大一和大二的初学者,除了在面包板上实验,建议也用Altium Designer软件画一下电路原理图和PCB板,尝试一下亲自动手制作电路板的乐趣。关于Altium Designer的使用,网上有很多视频教程,慢慢摸索一下就会了。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭