当前位置:首页 > 电源 > 数字电源
[导读]在Buck同步整流技术的基础上,充分利用其电路的特点,提出了双向直流变换器,并分析了其可行性。

摘要:在Buck同步整流技术的基础上,充分利用其电路的特点,提出了双向直流变换器,并分析了其可行性。针对双向恒压和双向恒流两种控制方式,分析了各自的开关管驱动脉冲要求,并给出了相应控制脉冲的实现方法。通过实验加以验证。
关键词:双向;同步整流;恒压;恒流

0 引言
    同步整流技术是近几年研究的热点,主要应用于低压大电流领域,其目的是为了解决续流管的导通损耗问题。采用一般的二极管续流,其导通电阻较大,应用在大电流场合时,损耗很大。用导通电阻非常小的MOS管代替二极管,可以解决损耗问题,但同时对驱动电路提出了更高的要求。

    此外,对Buck电路应用同步整流技术,用MOS管代替二极管后,电路从拓扑上整合了Buck和Boost两种变换器,为实现双向DC/DC变换提供了可能。在需要单向升降压且能量可以双向流动的场合,很有应用价值,如应用于混合动力电动汽车时,辅以三相可控全桥电路,可以实现蓄电池的充放电。

l 工作原理
1 1 电路拓扑

    双向同步整流电路拓扑如图1所示。当电路工作于正向Buck时,Sw作为主开关管,当Sw导通时,S关断,电感L储能;当Sw关断时,SR导通续流,电感L释能给输出负载供电。当电路工作于反向Boost升压电路时,SR作为主开关管,当SR导通时,Sw关断,电感L储能;当SR关断时,Sw导通续流,电感L释能给输出负载供电。

1.2 参数设计
   
设置电感L是为了抑制电流脉动,因此其设计依据是电流纹波要求。电容C1主要是为了在Boost电路Sw关断时,维持输出电压恒定,而电容C2主要是为了抑制Buck输出电压脉动,其设计依据是电压纹波要求,因此两个电容的参数设计并不一致。具体算式如下。

   
式中:Vg为Buck电路输入电压;
    Vo为Boost电路输入电压;
    D为Sw管的占空比:
    △Q为对应输出电压纹波的电荷增量;
    △Vo为Buck电路输出电压纹波要求;
    △Vg为Boost电路输出电压纹波要求;
    △lmin为Buck和Boost电路电流纹波要求的较小值;
    I为电感电流。

1.3双向恒流型控制
    1)当电路工作在Buck模式时,被控制的是电感电流,目的是为了维持电感电流恒定。电路参数方程为

   

    2)当电路工作在Boost模式时,被控制的是Sw的平均电流,目的是为了维持此平均电流恒定。电路参数方程为

   

    由以上分析可知,电路作正向Buck和反向Boost运行时,被控制的电流都有,则两种电路工作模式都可以将Sw定义为主开关管,控制电路直接对Sw进行控制,SR则采用互补控制。

    图2给出了闭环双向恒流控制的系统框图,电流经采样电阻采样,由外部控制脚(Select)控制通道选择器,切换两路被采样信号。采样得到的信号由运放放大,经PID补偿后与三角波比较得到方波信号去控制驱动开关管,从而构成一个闭环的负反馈系统。

1.4双向恒压型控制
    1)当电路工作在Buck模式时,控制的目的是为了维持输出电压恒定。电路参数方程为

    Vo=DVg,

   

    2)当电路工作在Boost模式时,被控制的是电压,控制目的是为了维持电压恒定。电路参数方程为

   

    由以上分析可知,电路作正向Buck和反向Boost运行时,被控制的电压与Sw占空比呈不同的变化逻辑。这就为驱动电路提出了更高的要求。一般的控制驱动芯片不能提供这样的功能。

    图3给出了闭环双向恒压控制的系统框图,由外部控制脚(Select)控制通道选择器,切换两路被采样的电压信号。采样得到的信号经分压电阻分压后,再经PI补偿与三角波比较得到方波信号去控制驱动开关管,从而构成一个闭环的负反馈系统。

2 驱动电路设计
2.1 单向驱动脉冲的要求

    双向直流变换电路的工作原理同传统的Buck及Boost变换器类似,当主开关管导通时,续流管关断,当主开关管关断时,续流管导通工作。所以两管驱动脉动应互补,同时为了防止共通,发生短路而烧毁器件,必须设置死区。

2.2 双向恒流控制的驱动设计
   
如图4所示,B脉冲经D脉冲延时所得,其延时时间等于死区时间。互补带延时的两路控制脉冲可由以下逻辑获得,,图5给出了相应的硬件实现电路。

  

2.3 双向恒压控制的驱动设计
   
当采用恒压型控制时,Buck和Boost电路各自的被控电压随主开关管的占空比D的变换逻辑刚好相反,因此,为了实现双向直流变换,还须增加一个控制脚,以切换两种工作模式下主开关管的定义,实现方法是交换两路控制脉冲,用逻辑电路来实现,逻辑表达式为:

   

    当,电路工作在正向Buck模式;相反,当K=0时,,SR=DB,电路工作在反向Boost模式。

    根据上面的分析,图6给出了双向恒压控制的控制驱动脉冲实现电路。

    最后,需要指出的是,采用数字控制,系统更简单,控制更灵活,抗干扰特性强,系统维护也方便,但考虑到单片机或DSP,数字信号处理器成本相对较高,故以上双向同步整流变换控制的分析设计采用硬件电路实现。

3 实验结果
   
正向Buck输入电压24v,输出10v/6A;反向Boost输入电压10v,输出24v/2.5A。

    图7和图8为双向恒压控制时的驱动波形,控制K脚的电平逻辑可以实现两路输出脉冲的互换,从而满足电路双向工作时的驱动要求。图9-图12为双向恒流和双向恒压控制下的输出电压和电流波形。

4 结语
    本文是在Buck同步整流的基础上,充分利用电路从拓扑上整合了Buck和Boost两种变换器的特点,提出了双向DC/DC变换,而并针对双向恒压控制和恒流控制两种不同的控制方式,分析了对驱动电路的要求,并给出了各自驱动脉冲的实现方法。实验结果与理论分析吻合。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭