当前位置:首页 > 电源 > 数字电源
[导读]引 言 美国微芯公司推出的dsPIC33FJ256MC710高性能16位数字信号控制器,采用了改进型的哈佛架构、C编译器优化的指令集、流水线取指令方式,具有实用、低价、指令集小、功耗低、速度高、体积小、功能强、抗干扰能

引 言
    美国微芯公司推出的dsPIC33FJ256MC710高性能16位数字信号控制器,采用了改进型的哈佛架构、C编译器优化的指令集、流水线取指令方式,具有实用、低价、指令集小、功耗低、速度高、体积小、功能强、抗干扰能力强等特点。dsPIC33FJ256MC710高性能16位数字信号控制器内含有 12位的A/D转换器(500 ksps)、直接存储器访问(DMA)、比较输出、捕捉输入、I2C接口、SPI接口、CAN接口、USART接口、Flash程序存储器自读写等强大的控制功能,内核又具有强大的数字信号处理能力,具有广阔的应用前景,主要应用于电机控制等领域。
    我们在芯片的实际应用中遇到了一些预想不到的问题,有的是由于硬件设计造成,有的是由于外部干扰造成,还有的是软件初始化造成的。这些问题的解决方法在微芯公司的应用文档中未提供,我们花了较多的时间进行分析、测试,最后解决了问题。本文将这些解决方法介绍给大家,以避免大家在这个问题上花费太多的时间或因一些无法解决的问题而造成损失。

1 正交编码器接口模块的问题
    dsPIC33FJ256MC710的正交编码器接口模块(以下简称QEI模块),在调试(Debug)模式下,能够正常工作,可以得到光电编码器的转动信号,但是在程序下载(Pro-gram)后模块不工作,不能得到光电编码器的转动信号。这个问题有些隐蔽,不易发现,在我们过去使用微芯公司芯片的过程中还从未遇到过。
    本文选用的光电编码器为1024线,差分信号输出。这种输出方式在工业现场使用具备较高的抗干扰能力,可以连接的导线较长。由于光电编码器的输出为差分信号,而芯片接口要求为TTL电平信号,因此增加一片AM26LS32完成电平转换,把差分信号转换为TTL电平信号。光电编码器输出的A和/A、B和/B、z和/Z三组差分信号接入AM26LS32芯片,转化为A、B、Z三路TTL电平信号与dsPIC33FJ256MC710的正交编码器接口模块 (QEI)连接。A、B为正交编码信号,z为光电编码器零位置信号。
    dsPIC33FJ系列芯片,具有智能化的QEI模块。它由QEA、QEB和INDX三个输入通道组成。QEA和QEB这两个通道具有智能的正交解码功能。把光电编码器输出的A、B两相正交编码信号接入这两个通道,芯片通过解码算法,自动判断出光电编码器的旋转方向和旋转相对位置。INDX通道称为索引脉冲。该通道通过接入Z信号,根据绝对零位置和相对位置,就可以确定光电编码器旋转的绝对位置。硬件接口原理框图如图1所示。

    按照微芯公司的应用笔记,QEI初始化程序如下:

   [!--empirenews.page--]
    在使用调试(Debug)模式运行程序时,用示波器可观察到芯片53号引脚RF8上电平在每次编码器位置过零时产生了翻转。QEI模块工作正常。而使用下载(Pro-gram)模式下载程序后,用示波器察到芯片53号引脚RF8上电平在每次编码器位置过零时不发生变化,QEI模块工作不正常。
    修改初始化程序,初始化复用引脚时增加对模数转化模块AD2PCFGL的配置,就解决了这个问题。程序修改如下:

  
    修改后的程序在下载(Program)模式的情况下,用示波器可以观察到芯片53号引脚RF8上电平在每次编码器位置过零时产生翻转,QEI模块正常工作。
    实际应用QEI模块时,直接读取POSCNT寄存器的值,就可知道所测量旋转轴的绝对位置。本文选用1024线的光电编码器,通过配置寄存器选择X4模式,POSCNT寄存器的计数范围为0~4 096。根据索引脉冲中断和POSCNT寄存器的值,便可精确地知道旋转轴的旋转方向、旋转速度、当前旋转轴位置等,精度可以达到1/4 096。[!--empirenews.page--]


2 RD15作为I/O输出的问题
    通用I/O端口是最基本最常用的接口,单片机、数字信号处理器通过它实现最基本的高低电平逻辑控制。应用时,dsPIC33FJ256MC710的第48号引脚作为I/O输出时,对应为RD15。RD15作为开关量输出时,软件设置为高电平,但引脚上不能建立高电平。通过大量的试验检测,发现芯片第48号引脚RD15作为I/O端口时不能正常工作。为了更清楚地说明该问题,引入47、53、54号引脚RD14、RF7、RF8与RD15作对比。相关验证程序如下:


    运行上述程序,用示波器观察dsPIC33FJ256MC710芯片的RD14、RF7、RF8对应的第47、53、54引脚上的电平均为规律的方波信号,而48引脚RD15上高电平不能正常建立,只有极小的尖峰脉冲,波形如图2所示。

    图2中上部波形为用作对比的RD14对应的第47号引脚上的电平信号,下部波形为RD15对应的第48号引脚上的电平信号。下部波形与上部波形的控制方式是一样的(见上述程序),但是不能得到高电平信号。
    修改程序的方法是在改变寄存器PORTDbits.RD15之后添加一个空操作指令asm("nop")。修改后程序如下:


    运行修改后的程序,RD15对应的第48号引脚上也出现规律的方波信号,解决了上述问题。这个问题在应用中也是不易发现的,查了微芯公司的应用笔记也无相关说明,因此详细写出来以馈读者。

结 语
    本文介绍了Microchip公司的高性能16位数字信号控制器dsPIC33FJ系列芯片的内部资源,在应用dsPIC33FJ256MC710芯片时遇到的两个疑难问题。这些问题可能是由于硬件设计造成,也可能是外部干扰或软件初始化造成的,往往是预想不到的问题。本文利用相关程序和波形具体阐述了这两个问题的现象和解决方法,并附上了相应的程序,希望对读者能有所帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭