当前位置:首页 > 电源 > 数字电源
[导读]为了对自适应滤波算法的滤波性能进行分析,在自适应滤波理论研究的基础上,研究自适应滤波器结构及LMS自适应滤波算法。给出LMS算法的求解的公式,基于LMS算法求解公式,采用Matlab仿真和DSP软件编程两种方法实现了LMS算法,并给出了不同信噪比条件下,LMS算法的仿真实现的滤波结果及DSP实现的滤波结果,通过两种结果的比较可以看出,在信噪比较低的条件下,LMS算法工程上的滤波效果明显达不到理论上的滤波效果。该研究对于自适应滤波理论的工程应用,具有一定的指导作用。

0 引 言
   
自适应滤波理论是20世纪50年代末开始发展起来的。它是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的范畴。对于随机数字信号的滤波处理,通常有维纳(Weiner)滤波器、卡尔曼(Kal-man)滤波器和自适应(Adaptive)滤波器。维纳滤波器的权系数是固定的,适用于平稳随机信号;卡尔曼滤波器的权系数是可变的,适用于非平稳随机信号。但是,只有在对信号和噪声的统计特性先验已知的情况下,这两种滤波器才能获得最优滤波。但在实际应用中,常无法确定这些统计特性的先验知识,或统计特性是随时间变化的,因此,在许多情况下,维纳滤波器或卡尔曼滤波器实现不了最优滤波,而自适应滤波不要求已知信号和噪声的统计特性,因而可以提供理想的滤波性能。当前,自适应滤波技术已广泛应用于自适应噪声对消、语音编码、自适应网络均衡器、雷达动目标显示、机载雷达杂波抑制、自适应天线旁瓣对消等众多领域。
    在一些信号和噪声特性无法预知或它们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化而变化,以达到最优滤波的效果。这里在对自适应滤波算法研究的基础上,给出了不同信噪比情况下,LMS算法仿真实现及基于DSP的工程实现,并对两种实现方法的结果进行了验证、分析比较。

1 自适应滤波理论
   
所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:一是滤波器的结构;二是调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。
1.1 自适应滤波器结构
    自适应滤波器主要有无限冲激响应(IIR)和有限冲激响应(FIR)两种类型。滤波器结构的选择对算法的处理起着重要的影响;IIR型结构滤波器的传输函数既有零点又有极点,它可以用不高的阶数实现具有陡峭通带特性,缺点是稳定性不好,且相位特性难于控制。FIR滤波器是全零点滤波器,它是稳定的,且能实现线性的相位特性,因此,自适应滤波器的结构通常采用F1R型滤波器的横向结构,结构如图1所示。
   
式中:n为时间序列;N为滤波器阶数;x(n)=[x(n),x(n-1),…,x(n-N+1)]T为输入矢量;W(n)=[ω0(n),ω1(n),…,ωN-1(n)]T为权系数矢量。

1.2 LMS自适应滤波算法
    LMS自适应滤波算法是根据最小均方误差准则进行设计的,LMS算法的目的是通过调整系数,使输出误差序列的均方值最小化,并且根据这个数据来修改权系数。误差序列的均方值ε表示为:
   
式中:d(n)为理想信号;e(n)为输出误差序列。将式(1)中的y(n)代人式(2)中有:
   
式中:R=E[X(n)XT(n)]为N×N自相关矩阵,表示输入信号采样值间的相关性矩阵。P=E[d(n)X(n)]为N×1互相关矩阵,表示理想信号d(n)与输入信号矢量的相关性。
    在均方误差最小时,最佳权系数应满足如下方程:

   
即:
    这是一个线性方程组,如果R矩阵为满秩矩阵,则有R-1存在,可得到权系数的最佳值满足:
   
    由式(6)可以知道,求出R和P就可以得到W*。由前几式可知,R是X(n)的自相关矩阵,P是d(n)与 X(n)的互相关矢量。
    LMS算法是以最陡下降法为原则的迭代算法,即W(n+1)矢量是W(n)矢量按均方误差性能平面的复斜率大小调节响应一个增量,即:
   
式中:u表示自适应步长;(n)为n次迭代的梯度,表示为:
   
    由式(7)产生了求解最佳权系数W*方法的两种方法,一种是最陡梯度法,其基本思路为:设定初始权系数W(0),用式(7)迭代公式计算,迭代直到W(n+1)与 W(n)误差小于规定范围。其中(n)的E[]计算可用下面的估计值表达式来计算:
   
式中K取值应足够大。如果用瞬时-2e(n)X(n)来代替上面对-2E[e(n)X(n)]的估计运算,就产生另一种算法:随机梯度法,即Widrow-Hoff的LMS算法。迭代公式表示为:
   

[!--empirenews.page--]
2 仿真及工程实现
2.1 LMS算法的仿真实现
   
假定输入信号由正弦波信号和高斯白噪声组成。其中正弦波信号的频率f0=1 000 Hz,幅度A=2,FIR滤波器的阶数N为128;当白噪声的均值为0,其方差δ分别为0.64,2,6.32,即信噪比(SNR)分别为5 dB,0 dB,-5 dB时,采用LMS算法进行滤波的结果分别如图2~图4所示。

2.2 LMS算法的DSP实现
   
设定采样数据的点数为1 024点,滤波器的全系数设定为128阶,自适应步长为5×10-5。设定输入信号为正弦波+噪声信号,其中正弦波的周期T=256 s,幅度A=200,正弦波信号功率Ps=20 000;噪声设定为零均值,方差δ分别为2 000,6 330,20 000,相应的信噪比 SNR=10 dB,5 dB,0 dB,根据自适应迭代公式(8),使用DSP编程实现自适应滤波算法,由DSP的CCS开发环境图形分析工具得到测试结果如图5~图7所示。

    根据图7比较分析可以得出:
    (1)无论是使用Matlab仿真方法还是使用DSP方法实现LMS算法,随着信噪比的降低,自适应滤波效果减弱。
    (2)在信噪比位于0 dB之上时,两种方法都可以取得较好的滤波效果。
    (3)在信噪比位于0 dB(或0 dB以下),仿真方法可以取得较好的滤波效果,但工程上却不能实现,即当信噪比位于0 dB时,LMS算法已失去工程上的应用价值。

3 结 语
    这里在对自适应滤波理论研究的基础上,对LMS自适应滤波算法进行了研究,给出了不同信噪比条件下,LMS算法的仿真实现及基于DSP的工程实现,并对两种实现结果进行了分析比较,通过如图7所示,LMS算法在信噪比较高时,除噪效果非常显著,当信噪比较低的时候,仿真上可以得到的比较理想的滤波效果,工程上却无法实现。该结论对于指导自适应滤波理论的工程实践具有指导作用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭