当前位置:首页 > 电源 > 数字电源
[导读]摘要:对以CMOS视频传感器为核心的数字图像设备(电脑眼)与USB接口进行了研究,并利用Anchor公司的EZ-USB2131Q芯片设计了一种基于外接RAM的单片方案,实现了电脑眼的USB接口。 关键词:电脑眼 USB总线 视频传感器

摘要:对以CMOS视频传感器为核心的数字图像设备(电脑眼)与USB接口进行了研究,并利用Anchor公司的EZ-USB2131Q芯片设计了一种基于外接RAM的单片方案,实现了电脑眼的USB接口。

    关键词:电脑眼 USB总线 视频传感器 帧 固件

USB作为一种新的扩展接口,主要致力于计算机-电话一体化和应用类消费产品。它的数据传输速率比串/并口都要高。USB总线具有时分复用的特点,多个不同速度的USB外设可以通过集线器同时连接到同一台计算机的同一个USB中上,在USB总线带宽允许的情况下,多个外设可以同时工作而不相互影响。USB传输速率适用于中、低速外设。高速模式下,USB支持实时的视频、音频和压缩的视频数据传输。本文对于CMOS视频传感器为核心的数字图像设备(电脑眼)与USB接口进行了研究,并利用Anchor公司的EZ-USB 2131Q芯片设计了一种基于外接RAM的单片方案,实现了电脑眼的USB接口。

1 USB概述与EZ-USB 2131Q芯片介绍

通用串行总线(Universal Serial Bus)适用于USB的外围设备连接到主机,通过PCI总线和PC内部的系统总线连接,实现数据的传送。同时USB又是一种通信协议,支持主系统和其外围设备之间的数据传送。在USB的网络协议中,每个USB的系统只能有一个主机。

1.1 USB的基本特征

USB是一种层状的星形拓扑,其根部是主机控制器,USB器件直接与根部接口连接实现其功能。若多个器件同时行使其功能,就要通过集线器来扩展,但扩展层不能超过5层。USB器件支持热插拔,而且可以即插即用。USB一般支持两种传输速度,即低速1.5Mbit/s和高速12Mbit/s,在USB2.0版本中其速度提高到480Mbit/s。

USB通过四根电缆线连接,两根用于电源线,两根用于差动数据线(D+和D-)。主机是USB通信的中心,它控制和分时连接器件。主机是唯一可利用系统资源的。主机控制器经根集线器初始化交易,主机控制器每毫秒开始一帧(USB2.0中每1/8毫秒开始一帧称微帧),在这一帧或1/8帧中,外设与主机进行数据通信。主机对多个外设进行交易,并对外设请求的带宽进行分时。

USB有四种传输方式用不同类型垢数据。控制传输,主要用于设置、命令和状态信息;中断传输,与一般的中断概念不同,主要用于键盘、鼠标等少量数据的传输;批量传输,主要用于打印机、扫描仪等大量数据传输;同步传输,用于视频、声音等实时传输。

同步传输方式下,数据传输保持固定的带宽和延时,保证了数据传输速率的稳定性。

USB有诸多优点,适合于与视频电脑眼的接口。本文应用一种内置微控制器的USB芯片,设计了一种同步传输方式的单片方案。

一般来讲,USB的控制芯片有两种类型,一种是MCU(微控制器)集成在芯片里面的产品;另一种是单独的一个芯片实现USB的Engine功能。

考虑到USB传输速率较高,如果利用只实现Engine功能的芯片,外加一个普通微控制器(如8051),其处理速度就会很慢而达不到USB传输要求。USB外设作为消费类产品的目的之一在于降低产品成本,如果采用高速微处理器(如DSP),满足了USB传输速率,但成本较高。在各方面比较下,选择了内置有微控制器的芯片EZ-USB 2131Q。

1.2 EZ-USB 2131Q芯片介绍。

EZ-USB 2131Q内部框图如图1所示。它是Anchor公司的一种内嵌有微控制器的80脚的USB芯片,包含有3个8位多功能端口,8位数据端口、16位地址端口、两个USB数据端口和其它输入输出端口。

其采用了一种基于内部RAM的解决方案,允许客户随时不断地设置和升级,不受端口数据、缓冲大小、传输速度及传输方式的限制。

片内嵌有一个增强型的8051微控制器,4个时钟的周期使它比标准8051的速度快3倍。

EZ-USB 2131Q有两种同步传输方式:即普通读写方式和快速读写方式。在普通读写方式下,芯片从外部读取或向外部写入数据的速率不会超过1000字节/ms,而且数据传输指令只能一一列出,共要写出1000行相同的指令。中间不能用循环来传输数据,而且也没有时间来加入其它指令。这种方式对于要求同步传输、每帧传输1023字节的设备是不可取的。在快速读写方式下,芯片可以在0.5ms内从外部读取或向外部写入1023字节的数据,并且还留有足够的时间可以加入其它指令。

2 电脑眼与EZ-USB 2131Q的接口方案

2.1 电脑眼的USB单片方案

本文中电脑眼的传输速度为9帧/s,发送一场图像数据约111ms;而USB采集一场图像数据约108ms,电脑眼发送图像数据和USB接收图像数据的时间基本相当。

根据EZ-USB 2131Q和电脑眼的总线其传输速率,可以利用外接存储器来实现各功能块的接口,电脑眼与EZ-SUB接口框图如图2所示。电脑眼通过8位数据线传输数据,如果保持电脑眼数据的连续传输,就用场同步和象素同步作为控制信号。EZ-USB2131Q具有8位输入输出数据线,多功能口可用来接收和发送控制信号,其地址线在快速传输模式下不可用。

芯片每帧从外部存储器取数1023字节,在电脑眼与EZ-USB 2131Q接口时,如果利用一个2KB的异步FIFO,电脑工作如下:在电路加电后,电脑眼的场同步控制信号时FIFO进行初始化,然后电脑眼的象素同步信号选通FIFO的读数据端口,将电脑眼采集的图像数据写入FIFO;当FIFO中的数据量达到1KB时(即半满时),FIFO自动对半满标志端口置位,EZ-USB2131Q芯片内的控制指令在USB的帧中断时检测到半满标志位后,发出快速读数据控制信号,从FIFO中取出1023个字节的图像数据存入芯片内部的缓冲中。因电脑眼一场图像的分辨率是384×287象素,一场图像数据为110208(1023×107+747)字节,在取完1023×107字节数据后,芯片在USB的下一帧中断时检测不到FIFO半满置位标志。为了保证电脑眼不中断地采集数据而只能舍弃剩余的747字节的数据,并且新的场同步信号的到来又会对FIFO进行初始化,开始存入新一场图像数据。这一接口电路虽然简单,能实现图像显示,但通过USB口所显示的图像不完整。因此,设计了基于外接RAM的单片方案。

2.2 基于外接RAM的单片方案

介于上述接口方案存在的缺陷,即要保证电脑眼不间断采集数据又要保证EZ-USB 2131Q芯片能获取一场图像的全部数据,可以采取如图3所示的另一种单片方案。上面提到过,电脑眼一场的图像数据是110208字节,要存入一场图像数据就需要一个128KB的RAM。为了保证电脑眼不间断地连续传输,在此单片方案中利用一个多路转换器对两个128KB的RAM进行切换,分别存入电脑眼连续采集的两场图像数据。外接RAM的电路中,包含有3大功能块:两个128KB的RAM组成存储功能块、两个地址发生器及一个多路转换器,如图3所示。存储功能块用于存储电脑眼的一场完整图像数据,地址发生器用于存储器的地址选择,多路转换器用于切换对存储块的工作路径。

多路转换器是利用电脑眼场同步信号来进行切换的,其切换频率与电脑眼的场同步信号的频率相当。在多路转换器中,当电脑眼的场同步信号到来时,一路选通RAMA并同时对RAMA写选通,另一路选通RAMB并同时对RAMB读选通。A地址发生器由电脑眼的象素同步信号触发,由此产生的地址信号被接入RAMA的地址端,并将电脑眼采集的一场图像数据写入RAMA中,A地址发生器对RAMB是不选通状态。在EZ-USB芯片端,芯片快速读控制信号触发B地址发生器,产生的地址信号接入RAMB地址端。此时B地址发生器对RAMA是不选通状态,这样USB芯片就能从RAMB中读取完整的一场图像数据。在芯片读取下一场图像数据时,上述过程正好相反,电脑眼向RAMB中写入数据,EZ-USB芯片从RAMA中取出数据。

2.3 基于RAM单片方案的软件流程

如上所述,EZ-USB 2131Q芯片采用了一种基于RAM的方案,实现数据格式转换的程序并未固化在芯片中,是一种软硬结合的固件(FIRMWARE)。当器件插入USB口时,主机对器件进行轮询,获取了器件的ID号后,系统程序将FIRMWARE下载到芯片内部,执行数据格式的逻辑转换。FIRMWARE结构如图4所示。其中:TD_Init():用于初始化FIRMWARE的全局状态变量;TD_Poll():反复调用,用于执行用户的外设功能;TD_Suspend():此函数可以使器件进入低功耗状态;TD_Resume():此函数用于响应外部恢复事件,使器件恢复正常工作状态。

FIRMWARE工作时,获取图像数据后转换成USB数据格式,提交给计算机处理。

利用FIFO的方法,电路简单,可以得到稳定的图像。但代价是要丢掉一些有效数据,在不损失有效数据的条件下又必须控制电脑眼,会使得图像的传输速率降。是一种可用但不最佳的方法。

电脑眼基于外接RAM的单片方案,虽然在电路上比接FIFO稍显复杂,但此方案解决了数据传输的完整性,而且能保持电脑眼连续采集数据,保证了电脑眼的最大传输速率。

图5是通过基于RAM的单片方案获取电脑眼采集的图像数据并经USB口送入计算机,经过客户软件处理后得到的电脑眼的图像。

综上所述,基于外接RAM的单片方案是一种稳定可以的解决方案,保证了数据的完整性和连续性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭