当前位置:首页 > 电源 > 数字电源
[导读]IC制造商已开发出用于LLC谐振转换器的控制器,而且发表了许多相关技术说明和设计工具,让其设计变得更容易,并使得这种技术获得更多的关注。现在,LLC谐振转换器已经成为LED TV最流行的主功率级拓扑。

最近,带LED背光单元的LCD电视的市场开始大幅增长,众多制造商纷纷致力于研发更纤薄高效的解决方案。多种类型的LED TV主功率级拓扑相继推出,比如非对称半桥转换器、双开关正激转换器和LLC谐振转换器。其中,LLC谐振转换器虽然相比其他转换器具有更多优势,但因为其设计复杂困难,所以在过去很少受到关注。不过,这几年间,IC制造商已开发出用于LLC谐振转换器的控制器,而且发表了许多相关技术说明和设计工具,让其设计变得更容易,并使得这种技术获得更多的关注。现在,LLC谐振转换器已经成为LED TV最流行的主功率级拓扑。


LLC谐振转换器的出色优点有:(1)在整个负载范围(包括轻载)下都是以ZVS(zero voltage switching,零电压开关)条件工作,从而实现高效率;(2)工作频率变化范围比较窄,便于高频变压器和输入滤波器的设计;(3)初级端所用开关的电压应力被钳位在输入电压上,而次级端两个二极管上的电压始终等于中心抽头变压器输出电压的两倍。


LLC谐振转换器可以工作在两个不同类型的ZVS区域之内。一个被称为“上区域(above region)”(或上谐振工作区域),这里,初级端的环流变小,但次级端上的二极管为硬开关。另一个是“下区域”(或下谐振工作区域),这时,次级端上的二极管可实现软开关。本文将简单介绍LLC谐振转换器的工作原理和工作区域,此外还将讨论其设计步骤。

图1  LLC谐振转换器的基本电路

LLC谐振转换器的工作原理
图1所示为LLC谐振转换器的基本电路。LLC谐振转换器一般包含一个带MOSFET的控制器、一个谐振网络和一个整流器网络。控制器以50%的占空比交替为两个MOSFET提供门信号,随负载变化而改变工作频率,调节输出电压Vout,这称为脉冲频率调制(PFM)。谐振网络包括两个谐振电感和一个谐振电容。谐振电感Lr、Lm与谐振电容Cr主要作为一个分压器,其阻抗随工作频率而变化(见式1),以获得所需的输出电压。在实际设计中,谐振网络可由一个采用如图2所示的分段骨架(sectional bobbin)的集成式变压器的磁化电感Lm与漏感Llk构成。而整流器网络对谐振网络产生的正弦波形进行整流,然后传输到输出级。
  (1)
式中,Vd基本近似等于Vin/2,而Rac基本近似等于8n2Vout/2πIout。
式(2)给出了采用如图2所示的实际变压器时,LLC谐振转换器的电压转换比。在式(2)中可观察到两个谐振频率。一个由Lp和Cr决定,记为ωp,另一个由Lr和Cr决定,记为ωr。利用这个公式,可获得LLC谐振转换器随频率和负载变化的增益特性曲线,如图3所示。

图2 采用分段骨架的集成式变压器(a),变压器等效电路(b)

图3 LLC谐振转换器的增益曲线和工作区域


图3中,每条曲线上以符号‘+’标注的最高值被称为‘峰值增益’,位于两个谐振频率ωp和ωr之间。当输出负载越来越大时,峰值增益值逐渐减小,其位置向更高频率移动。同时,以符号‘×’标注的ωr时的谐振增益却是固定的,不随输出负载的变化而变化。增益曲线说明在ZVS状态下,随着谐振网络的工作频率增加,增益减小,输出电压降低。
(2)
式中。

LLC谐振转换器的工作区域
如图3所示,LLC谐振转换器的工作区域可标注为“+”的峰值增益和标注为“×”的谐振频率而分为三部分。首先,以峰值点为界,左边是ZCS(零电流开关)区(或称为电容区),右边是ZVS(零电压开关)区(或称为电感区)。在ZVS区,谐振频率ωr的左边是下区(below region),右边是上区域(above region)。当LLC谐振转换器工作在ZCS区时,在开关瞬间有大量反向恢复电流流经MOSFET,故LLC谐振转换器应该工作在ZVS区,要充分利用最小工作频率的限制不让带MOSFET的LLC谐振转换器进入ZCS区。


如上所述,根据工作频率是大于ωr还是小于ω,LLC谐振转换器可以工作在上区域或下区域。这还取决于两种工作模式的不同特性。当LLC谐振转换器被设计为上区域工作时,流到MOSFET的环流小于下谐振工作上的,MOSFET的传导损耗因此减小,从而提高效率。不过,次级端上的二极管为硬开关,故必须采用肖特基或UF(超快速恢复)二极管来防止严重的反向恢复电流。鉴于此,像便携式设备LCD的电源这样的低压应用有时会考虑采用上谐振工作。另一方面,在下谐振工作的情况下,流到MOSFET的环流比上谐振工作的要大。不过下谐振工作允许次级端上的二极管进行软导通/关断,这样就可以采用普通的快速恢复二极管。下谐振工作是LED或PDP TV等高压应用的首选。这些应用中,输出电压稍高,因而不能使用低额定电压的肖特基二极管。[!--empirenews.page--]


因此,必须根据应用的规格和特性来选择LLC谐振转换器的工作区域。下一节将讨论LLC谐振转换器工作区域的选择步骤。

下谐振工作的设计步骤
图4所示为一个LLC谐振转换器在100%和10%负载条件下的频域增益曲线。图中,fop@10%loadfop@100%load 为LLC谐振转换器的工作频率,分别是在100%和10%负载条件下调节最大输入电压Vin,max对应的额定输出电压。Mfr代表谐振频率fr下的增益,是固定的,不随负载变化。如上所述,谐振频率是把ZVS区域划分为上/下谐振工作的关键点。因此,当把Vin,max条件下所需增益设定至大于Mfr,则即使输入电压和输出负载都减小,所需增益也必然不会小于Mfr。这意味着LLC谐振转换器的工作频率小于对应Mfr的fr,故它总是工作在下区域。下面介绍一个LED TV电源的设计步骤。其输入电压由PFC(功率因数校正)提供,最小、额定和最大输入电压分别为350、380和400Vdc,输出规格为120V/1.5A。另外,集成式变压器使用分段骨架,控制器采用的是带有两个MOSFET的FSFR系列器件,这是飞兆半导体专为谐振半桥型转换器而设计的产品。

图4 LLC谐振转换器的频域增益曲线


● 步骤1 选择m和fr,并计算Mfr
利用式2,谐振频率fr下的谐振增益Mfr可由下式求得:
                  (3)
式3中,m和fr都由设计人员选择。若选择的m值很小,峰值增益增加,且需要较大的Lr。若m值过小,需要外部电感,因为这时要在集成式变压器中获得高值Lr实际上是相当困难的。另一方面,如果选择较大的m值,则峰值增益降低。由于Lr比Lp低,使用集成式变压器十分容易。一般而言,m值在4~7之间是比较合理的。


当m和fr分别设置为6kHz和100kHz时,求得谐振频率下的谐振增益为1.09。


● 步骤2  确定最大增益


利用公式(4)可求出所需最小和最大增益:
Mmin=(Vvirtual/Vin,max)Mfr,Mmax=(Vvirtual/Vin,min)Mfr             (4)
式中,Mmin和Mmax分别为最小和最大增益。Vvirtual是对应于谐振频率的有效输入电压。


如前所述,如果谐振电压下的Vvirtual被设定为大于最大输入电压Vin,max,则工作频率将总是低于谐振频率,于是设计出的LLC谐振转换器就会工作在下谐振工作区域。


假定Virtual设为420Vdc并考虑到余裕,Mmin和Mmax可采用式4计算:
Mmin=420/400×1.1=1.16/Mmax=420/350×1.1=1.31


考虑到因负载瞬态和输入电压变化,峰值增益应具有一定余裕,增加10%的余裕是比较恰当的,故合理的Mmax值为1.45。


● 步骤3  确定集成式变压器的匝数比


利用步骤2中求得的有效输入电压Vvirtual和合理的谐振增益Mfr,集成式变压器的匝数比可由式(5)求得:
n=Vvirtual/2(Vout+VF)         (5)
式中,Vout和VF分别是次级端二极管的额定输出电压和正向电压降。如果需要调节匝数比n,可回到步骤2,增加或减小有效输入电压Vvirtual即可。在步骤2中,Vvirtual已被设为420Vdc。VF取1Vdc,集成式变压器的匝数比为
n=420/2(120+1)×1.1=1.9


● 步骤4 确定谐振网络

图5 根据峰值增益和不同m值找出正确的Q因子的查找表


利用图5所示的这种查找表,能够根据峰值增益和不同的m值找出正确的Q因子。利用m值和前面步骤中获得的所需最大增益,可在图5中选出正确的Q因子。一旦确定了正确的Q因子,谐振网络的参数就可利用公式(6)求出。
Cr=1/(2πQfrRac),Lr=1/(2πfr)2Cr,Lp=Lr×m            (6)
这里,Cr和Lr分别为谐振电容和电感,Lp为集成式变压器的初级端电感。


在前面的步骤中,m值选为6,考虑到了余裕的所需最大增益Mmax求得为1.45。通过图5找出的Mmax对应的正确Q因子为0.35。当谐振频率为100kHz时,谐振电容Cr为19.1nF。


考虑到出厂电容的标准值,一个22nF的电容就足够了,最后可得Lr=115μH,Lp=690μH。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭