当前位置:首页 > 电源 > 数字电源
[导读]运用矩阵变换器的优良特性实现其在感应加热领域的应用,采用四步法换流策略和分频段控制方案,有利于提高性能输出和降低CPU资源损耗;通过检测三相输入电压与设定的频率并分析、计算来切换不同的控制方案,实现参数可调的电能输出。基于该方案进行模拟器的建立。通过相应的输入/输出参数检测,表明控制策略的可行性和系统良好可应用性。

目前矩阵式变频器因采用具有输入功率因数可调,输出频率连续,功率双向流动且无直流母线的矩阵式变换器(MC)而倍受关注。虽然三相用电设备广泛应用于生产领域,但是在一些行业(如感应加热和感应熔炼)仍需要单相电源,而在这些行业用电对电网产生严重污染,如果将矩阵式变换器(MC)应用在这些行业中将对新一代“绿色”电源产生深远的影响。在此综合考虑因不同的控制策略,低频段和高频段对系统的资源占用率不同,故采用不同的控制策略,CPU采用DSP和CPLD联合控制,实现了具有安全换流和相应的保护功能的三相-单相调功电源,该电源就很好地应用在相应的场合,充分发挥矩阵式电源的优良特性。

l 主电路结构和换流策略
1.1 主电路结构

    系统电路采用的是三相-单相变换电路的其中一种较为简单的拓扑结构(带中线)如图1所示。将S1+和S1-均导通的状态称为S1状态。为了尽可能多地滤除输入电流中的由开关动作产生的高频谐波中高频谐波成分,减少对电网侧的高频污染,并提高输入功率因数,因此引入滤波器,阻尼电阻Rd有利于在转折频率点后高频电流的衰减,并入电容有利于减小开关器件间的耦合。电路采用反向并联IGBT构成双向开关,通过控制各个开关状态的时间,实现目标电压。


1.2 换流策略
    由主电路的基本特征和应用在感应加热行业就决定了矩阵式变换器在工作过程中必须遵循两个原则:矩阵式变换器的三相输入中的任意两相之间不能短路,避免使用电压源短路造成过流。矩阵式变换器的输出不能断路,避免感性负载突然断路而产生的过电压。由此可见在换流的过程中必须选择可靠的换流策略,为了解决这一问题采用传统的基于电流检测的四步换流策略较为合适。该方法必须加以电流检测元件(电流互感器、霍尔传感器等),为了保证IGBT的可靠开通与关断,将控制电压设定为:开通电压+15 V(记为1),关断电压-5 V(记为O)。为了便于说明规定电流如图1所示时记为I(+),反之I(-)。四步换流开关转换过程如图2所示,现以由S1到S2状态进行换流的四个过程进行说明,假设此时检测输出电流方向为I(+)。第一步,在开通S2-之前必须将S1-关断,否则U1和U2将通过S2+和S1-形成回路;第二步.开通S2-,如果
U2>U1,此时负载电流将立刻从S1-转移到S2-,否则负载电流将继续通过S1+;第三步,在开通S2-前先关断S1+,此时负载电流已转移到S2+;第四步,开通S2-。


    当电流反向时采用相同的方法,只是开通顺序的不同。由此可见采用四步换流法,既禁止了可能是电源发生短路的组合,又保证了在任意时刻至少有一条通路,从而提高了环流的安全性。值得注意的是在换流的过程中为了避免换流出错需要锁存获取的电流方向的信息。

2 控制策略
    由于系统的结构所决定,空间矢量调制法以及双电压控制法均不能直接应用于三相-单相矩阵式变换器中。为了使系统更为可靠合理的运行,现在必须解决分配和控制双向开关的通断来达到输出要求,在该系统中采用输入拟合法,其以设定输出电压为目标,确定适当的选择原则,并基于该原则在每个采样周期内选择相应的输入电压,拟合出目标电压。就目前得到应用的两种控制策略而言,以输入三相电压中的最大相和最小相拟合出设定的输出电压,输出电压较为平稳但是控制策略在高频段CPU资源开销大。以输入电压与输出电压的差值为选择依据,其算法简单、在高频段资源占有率低,但是在低频段电压输出波动大。
    为了使系统得到更好的性能,采用二者相互结合的控制策略,在低频段采用第一种控制策略,在高频段采用第二种策略。
    假设变换器的输入为三相理想电源电压,则:
   
    对于第一种策略在每个采样周期内,只利用输入电压的最大相Umax和最小相Umin合成目标输出电压U0。
   
    与此对应定义最大相开关函数Smax和Smin。在一个采样周期内,两个开关的导通时间T1,T2分别为:
   
式中:U0为输出电压参考值;Ts为采样周期时间长度。[!--empirenews.page--]
    在相应的控制算法下其拟合示意图如图3所示。其实质上类似于直流斩波电路,不过在此其是对交流斩波。利用该拟合方法进行输出得到的电压比较平稳。第二种控制策略较为简单在此不做详述。高频和低频控制策略的转换通过软件来实现,输出U0的频率f0可以通过人机交互装置进行设定(假如设定50 Hz以下为低频,以上为高频),其子程序结构框图如图4所示。



3 数字控制系统组成
    检测的信号多而且要求精度高,同时产生相应的控制信号要求实时性好。这样就决定了其CPU要求特别高,为了满足这一要求,该系统采用CPU为CPLD+DSP数字控制系统(见图5)。为了使其各自的优点充分发挥,利用DSP(TMS32LF2407)的模拟输入通道接收来自信号检测调制信号模块的输入/输出信号实时计算并执行控制策略(输入拟合法),再将其运算的结果送给CPLD,CPLD根据相应的信号进行逻辑运算实现逻辑换流功能。


    在CPU运行过程中CPLD和DSP同时接收输入/输出电压电流信号,但是其实现的功能不一样:DSP接收到的信号是为了控制策略的运算,而CPLD接收的信号是为了保证每个时刻发出的控制信号的准确性,当CPLD发现故障时将进行相应处理并显示故障位置。

4 矩阵式变换器(MC)系统实验分析
    在该系统的设计当中CPU模块采用SY-XDS510USB 2.0 DSP仿真器实现对双向开关管的控制,从而实现MC系统的部分实验,以下是不同频率下的电压电流实验的波形图,如图6所示。


    在低频段由于最大相和最小相拟合出设定的输出电压控制策略,该策略类似于直流的斩波方法,所以其输出的波形就是一斩波波形,由于和负载并入了电容,所以对负载两端的电压比较平稳。对于高频段采用的电压逼近原则,所以输出电压和电流都存在一定的波动,但是其节约了CPU的资源,提高了系统的可靠性。

5 结语
    系统针对感应加热和感应熔炼等行业进行三相/单相电源变换,采用分频段控制策略,实现了稳定与资源的合理协调,达到了很好的效果。虽然控制方法和成本较高,但就其在功率因数以及对电网影响等各方面而言仍然远高于现有的变换方式。随着集成模块和控制方法的进步,必将矩阵变换器应用在更广阔的领域。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭